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In December 2019, Coronavirus pandemic (COVID-19) caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viruses, which affected the
whole world, is emerged. The details on the epidemiology, infection source,
transmission mode, and prognosis of SARS-CoV-2 gave in this review. Universal
infection control standards such as hand hygiene, environmental cleanliness, use of
personal protective equipment, and quarantine used to prevent the spread of
COVID-19 without vaccine. However, many vaccine candidate studies carried out
globally with using traditional and technological approaches. Innovations in
technology allow the development of nanotechnological tools and the formation
of systems that will inactivate SARS-CoV-2 in patients. It expected to include
technologies that combine different disciplines, especially robotic applications,
antimicrobial nanotechnology, and tissue engineering for the future treatment of
COVID-19. This review-based work discusses the relationship of COVID-19 and
nanotechnology based working principles.
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1 Introduction

Nanotechnology is used to achieve precision manufacturing at the nanometer scale
(10–9 m). In its most comprehensive expression, it is the most current technology that
enables the production of materials to be used in chemical, physical, and biological systems
in submicron sizes and the integration of the obtained nanomaterials into larger systems
(Nasrollahzadeh et al., 2019). The developed nanomaterials (Figure 1) are classified into
four classes according to their dimensionality. First and second classes are miniature
materials (nanospheres and clusters) and one-dimensional materials (nanotubes, wires,
and rods), respectively. Other classes are called as two dimensional materials (thin films,
plates, and layered structures), and three-dimensional materials (bulk nanomaterials,
hydrogels, and polycrystals) (Poh et al., 2018). These materials have more functionality
due to their small size, and contribution for developing the physical, chemical, electrical,
mechanical, and optical properties of the systems in which they are used (Lan, 2022). Also,
they bring many innovations from daily life to the industrial area (Nasrollahzadeh et al.,
2019). The application of nanotechnology (Figure 2) has branched out into a large number
of various areas of science as environmental applications (i.e., energy conversion/storage/
transmission, and water treatment), agricultural industry applications, cosmetics, and
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nanomedicine (Kargozar and Mozafari, 2018). Furthermore,
according to latest studies, the nanomaterials play an important
role in the imaging, diagnosis, and treatment processes of diseases
caused by viral infections, including SARS-CoV-2. Enzyme-based
tests (Mahmoudinobar et al., 2021) and infection diagnostic kits
(Singh et al., 2021) used for diagnosis of COVID-19; gloves, masks
(Mallakpour et al., 2022), disinfectants (Talebian et al., 2020), and
vaccines (Kashte et al., 2021) used to prevent spread of COVID-19;
and drug delivery systems (Chowdhury et al., 2021) for the
treatment of COVID-19. Considering the effect of the virus and
the problems it causes, emergency solutions based on
nanotechnology should be developed because the virus threatens
the lives of hundreds of people every day (Campos et al., 2020;
Ruiz-Hitzky et al., 2020).

1.1 Coronaviruses and SARS-CoV-2

The world is currently dealing with COVID-19, a serious and
acute respiratory problem that started in December 2019 and is still
an ongoing issue (Tavares et al., 2022). Since the disease began to
spread, it has caused close to 600 million confirmed cases of
COVID-19 and approximately 6.5 million deaths up to
26 August 2022 (WHO, 2022a). The disease was global
pandemic in March 2020 by the World Health Organization
(WHO). SARS-CoV-2 first emerged in Wuhan, China that
belongs to the Coronavirinae subfamily (family: Coronaviridae)
(Campos et al., 2020; Stewart et al., 2020). SARS-CoV-2 is a
spherically enveloped RNA virus that leads to higher
pathogenicity, contagiousness, and mortality rates than SARS-
CoV, and the Middle East respiratory syndrome coronavirus
(MERS-CoV) (Rossi et al., 2020). SARS-CoV-2 has structurally
four main proteins as Spike (S), Envelope (E), Membrane (M), and
Nucleocapsid (N) proteins (Figure 3). The S protein is the
glycosylated main surface protein which covers the surface and
is crucial for the attachment of viruses to the host cell and entering

it (Xia, 2021). The E protein is the small structural protein and is
involved in viral assembly (Schoeman and Fielding, 2019; Rahman
et al., 2021). The M protein is the most abundant structural protein
and especially involved in the formation of the viral envelope
(Schoeman and Fielding, 2019). The N protein is the
phosphoprotein that only binds to the RNA genome and
involved in the formation of nucleocapsids (Dutta et al., 2020;
Zeng et al., 2020; Gao et al., 2021). Understanding the entry
mechanism of the virus is very important in the development of
new treatments against its infectivity and pathogenesis. Therefore,
it is necessary to investigate the functions of the main structural
proteins and their effects on the entry mechanism of SARS-CoV-2
(Figure 3) in detail (Al Adem et al., 2020).

The life cycle of the virus begins with its entry into host cells. The
SARS-CoV-2 attaches to the host cell surface protein angiotensin-
converting enzyme 2 receptor (ACE2) which is the target receptor of
SARS-CoV-2 (Coperchini et al., 2020). After membrane fusion, the
virion can release RNA into the host. The translation of the structural
proteins (except N protein) occurs in the ER due to post-translational
modification, while only the translation of the N protein occurs in the
cytoplasm. The newly assembled and matured virions are released
from the host cell in three different ways by budding, exocytosis, or cell
death. The released virions are ready to infect healthy cells via reported
modes of transmission (Poduri et al., 2020; Chen et al., 2021; Khade
et al., 2021; Pizzato et al., 2022).

1.2 COVID-19

The sources of infection and transmission are very important
for developing new approaches and controlling the prevention of
infection. Normally, the source of COVID-19 is unclear. However,
it is believed that the first source may be bats (Yin and Wunderink,
2018; Rahman et al., 2020). It should be noted that, as with bats,
other animals sold in Wuhan animal markets, such as civet cats,

FIGURE 1
Nanomaterials are used in diagnosis, prevention, and treatment of
COVID-19.

FIGURE 2
Nanotechnology is used in different scientific applications,
including COVID-19.
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foxes, mink, and raccoon dogs, also carry SARS-CoV-2. When the
samples taken from the patients who had contact with these
animals and the samples from these animals are compared, it is
observed that the virus types are the same. As a result, live animals
susceptible to SARS-related CoV were identified as the main
progenitors of COVID-19 (Lytras et al., 2021). For this reason,

it is even believed that SARS-CoV-2, like other coronaviruses, is
transmitted zoonically. However, COVID-19 can be directly
transmitted from human to human (Jayaweera et al., 2020).

According to the statements of Chinese health authorities, the
transmission in humans occurred via direct contact, aerosol, and
droplet (Figure 3). Although direct transmission means direct contact

FIGURE 3
Transmission modes COVID-19, life cycle and structure of SARS-CoV-2.
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with virus infected objects or surfaces, especially close contact with the
virus infected people’s mucous membranes of the mouth, eyes, and
tears (Crawford et al., 2022). In aerosol or droplet transmission, the
diameter of droplet is a critical issue. According to WHO, the droplets
have 5–10 μm diameter and the aerosols have less than 5 μmdiameter.
During respiratory activities such as coughing, breathing, laughing, or
talking, both of these large and small droplets can be produced. The
viral particles encapsulated within these droplets. Therefore, droplet
transmission requires close contact between an infected person and a
susceptible person (Ge et al., 2020; Wilson et al., 2020). Also, studies
have shown that aerosols can travel more than six feet due to their
ability to be suspended in the air (Kutter et al., 2018). Small aerosols
are trapped deep in the lungs and cause infection in the lower
respiratory tract, while large droplets are trapped in the upper
respiratory tract (Jayaweera et al., 2020). According to data from
patients, older adults have a higher risk of contracting the disease and a
higher mortality rate, because, the levels of hormones in the immune
system change during aging. In older adults, some comorbidities such
as cardiovascular diseases, respiratory diseases, cancer, and diabetes
problems become more prominent, making the elderly more
susceptible to COVID-19 (Farshbafnadi et al., 2021). Also, severe
COVID-19 is not limited to the elderly population as stated; children
and young adults are also at risk. It is inevitable that patients with
underlying diseases will experience dangerous symptoms and life-
threatening complications if they are infected with the SARS-CoV-2
(Chao et al., 2020; Harrison et al., 2020).

1.2.1 Symptoms
The period between exposure to the virus and the onset of

clinical symptoms is called the incubation period, and it is very
important in determining the case definition and the establishment
of public health programs aimed at taking new precautions against
COVID-19 and reducing local transmission. According toWHO, the
incubation period of SARS-CoV-2 ranged from 1 to 14 days (WHO,
2020a; Elias et al., 2021). Patients exposed to COVID-19 exhibit mild
to moderate symptoms such as headache, fever, fatigue, dry cough,
loss of taste and smell, diarrhea, dyspnea, sore throat, chest pain,
muscle pain, and abdominal pain (Weng et al., 2021). The clinical
features of patients infected with SARS-CoV-2 were first determined
by Huang C. et al. (2020; Huang W. C. et al., 2020). According to the
classification made by the National Health Institutes (NIH), the
disease has five types. First, they are asymptomatic or
presymptomatic patients who have positive tests for COVID-19,
but do not show clinical symptoms. Secondly, patients with obvious
COVID-19 symptoms such as fever, cough, malaise, headache, but
no shortness of breath. Third is that patients with clinical symptoms
in the lower respiratory tract. Fourth is severe illness that is
determined according to a ratio of partial pressure of arterial
oxygen to fraction of inspired oxygen. The last one is that critical
patients that have especially multiple organ dysfunction, acute
respiratory failure, and septic shock. The acute respiratory
syndrome begins after 1 week the onset of symptoms and
progresses critically (COVID-19 Treatment Guidelines Panel, 2022).

Here, the current nano-based approaches and developments for
the prevention, diagnosis, and treatment of COVID-19 detailed in
order to emphasize how nanotechnology can help to control viral
infections. Moreover, the developed nanotechnological solutions and
the connections of multidisciplinary fields during the COVID-19
pandemic are mentioned in sections.

2 Nanotechnology and personal
protective equipment for COVID-19

2.1 Personal protective equipment

Although there are many treatment methods developed against
COVID-19, there is still a lack of an effective method. In addition,
problems such as vaccine and drug development strategies take time,
and faster solutions need to be developed to prevent the spread of the
virus. The prevention of SARS-CoV-2 without vaccination or other
administrative controls could be achieved by using universal infection
control standards such as hand hygiene, environmental sanitation,
maintaining social distance, personal protective equipment (PPE), and
quarantine. However, the most visible but limited control standard is
the use of PPE. People who use PPE correctly, especially healthcare
workers, are largely protected from the virus and the potential harm
they can cause both to themselves and to the environment is reduced.
The PPE can act as a physical barrier against viral pathogens. The
frequently used PPE types are filtering face piece respirator masks (N
types, R types and P types), surgical face masks, gowns/apron, gloves,
eye shields, goggles, and boots/closed work shoes (Figure 4) (WHO,
2020b). The applied nanotechnological amplifications contribute to
the properties of PPE such as UV protection, antimicrobial properties,
and fire retardant (Chintagunta et al., 2021). In addition,
nanotechnology can provide hydrophobic and comfortable
products for fighting with COVID-19 (Campos et al., 2020).

2.1.1 Nanotechnology in masks
Masks are the most important equipment designed to prevent the

entry of pathogens such as viruses from the mouth and nose and to
protect both the wearer and the immediate environment from
respirable harmful agents. The masks are divided into 3 classes
according to their filtering types; single-use face masks, respirator
masks, and surgical masks (Figure 5) (Tcharkhtchi et al., 2021).

An ideal mask filters bioaeresols effectively and offers a high level
of comfort. However, some external factors like humidity, temperature
and pattern of airflow and material properties of masks affect filtration
efficiency and mask quality. During pandemic challenge,
nanomaterials are the best developed solutions to improve the
filtration efficiency of masks when added to textile products.
Simultaneously, they can have direct impact on the survivability of
viruses that come into contact with the mask. For example, both
nanofibers and NPs introduced to masks for improving of antiviral
properties, filtering capacity, and breathability properties. Nanofibers
produced by electrospinning technology are very useful materials with
average fiber diameters in the nanometer range because of their higher
surface area to volume ratio that can be easily functionalized with
desired property (Ullah et al., 2020). Microorganisms reproduce
rapidly in a moist environment. For this reason, thermal
optimization of the masks is crucial. In one example, Yang et al.
gave a cooling effect and excellent particle filtering properties to masks
by using nanofiber on nanoporous polyethylene (Yang et al., 2017).

Although NPs have many advantages, high surface/volume ratio
causes an increase in toxicology. They carry many risks for both public
health and the environment due to insufficient epidemiological studies
(Valdiglesias and Laffon, 2020). Priority should be given to the
development of new systems that can test the effects of
nanoparticles on human health and the environment so that they
can be applied to masks (Palmieri et al., 2021). As one of the new
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technologies, three dimensionally (3D) printing technology was
applied to produce face masks against COVID-19. The new masks
were designed with reusable purposes. In 3D-printed masks, only filter
material requires consistent replacement. The other parts can be easily
recycled and therefore 3D-printed masks are more sustainable than
single-use face masks (Choong et al., 2020; Deng et al., 2022).
According to new studies, Swennen et al. (Swennen et al., 2020)
have produced 3D printed, custom-made, reusable N95, personalized

masks. They used two reusable polyamide composite components
(face mask and a filter membrane support) and two disposable
components (a head fixation band and a filter membrane) during
production. Although 3D face masks combined with FFP2/3 filter
membranes are presented as a valid alternative source, there is no
virological validation and no data on the safe reuse of the face mask
with new filter membranes and headbands. In another study, a 3D
printed mask was produced by Provenzano et al. (Provenzano et al.,

FIGURE 4
PPE used in the COVID-19 pandemic.

FIGURE 5
Mask and respirator types for COVID-19.
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2020). These simple materials are composed of reusable and printable
headpiece to which different transparent plastic sheet can be
connected to form a face shield. They can easily protect user’s eyes
and mouth (Tino et al., 2020).

Although 3D-printed masks provide some protection and are
more sustainable, their filtering performance has not yet been
approved by any regulatory agency. Filtering efficiencies are very
low due to leakages between the interfaces on the printed mask.
Therefore, it is not recommended to use 3D-printed masks as an
alternative to medical masks until sufficiently sensitive and reliable
tests are developed to measure filtration efficiencies. In addition, the
printing parameters should be improved, and further optimizations
should be made by the researchers for increasing the filtration
efficiency (Deng et al., 2022).

2.1.2 Nanotechnology in gloves
Medical gloves are one of the important PPE used by healthcare

professionals to prevent the spread of the virus. There are several types
of gloves (Tabary et al., 2021). However, nitrile and latex-based gloves
have been used frequently in the pandemic. The biggest problem of
gloves is the inappropriate use of them. If they are used uncontrollably,
they can prepare a shelter environment for viruses and
microorganisms. Especially, if hands are touched to the face after
contact with unclean surfaces, the risk of virus transmission is very
high. Therefore, with the addition of virucidal agents, the risk of virus
transmission of gloves is reduced. As with masks, many studies have
been carried out using nanotechnology in gloves. The antibacterial
effects of silver nanoparticles (AgNPs) were used in glove production
and it was proven to have virucidal activity (Aydemir and Ulusu,
2020). In another aspect, viruses can enter host cells by using the
ACE2 receptor. If the ACE2 level of the body is decreased, the
penetration of the viruses can be blocked and reduced. Therefore,
the catching of the viruses before entry into cells by using
nanotechnology would be exceedingly helpful. As a result of the
studies, it has been observed that nanomaterials containing
ACE2 reduce the infection rate. ACE2 proteins coated with NPs
neutralize viruses and prevent them from entering host cells. It is
extremely important to use nanotechnology-based, nanoparticle
coated ACE2 proteins in the production of glove (Aydemir and
Ulusu, 2020; Rasmi et al., 2021). However, without relying solely
on nanotechnology, care must be taken to use gloves carefully (Yadav
D. K. et al., 2020).

2.1.3 Nanotechnology in disinfectants
Disinfectants or antiseptics are chemical substances specially

prepared to inactivate or destroy microorganisms. If it completely
kills microorganisms in the places where they are used, sterilization is
achieved. However, the effectiveness of a disinfectant depends on its
chemical composition, the characteristics of the pathogen in which it is
used, and the intracellular vulnerability. One of the most important
ways to prevent COVID-19 is to reduce transmission routes by using
disinfectants. The disinfectant types that are frequently used in the
COVID-19 are classified as alcohol, phenol, formaldehyde and
glutaraldehyde-based, oxidizing agents, chlorine, and iodine
releasing agents. The mechanism of each disinfectant is different.
For example, alcohols denature proteins in microorganisms and cause
cell lysis by causing membrane damage. In particular, it was stated that
ethanol showed virucidal activity on both living and non-living
surfaces (Al-Sayah, 2020; Dhama et al., 2021). Another agent,

chlorine, damages the cell wall of microbes by affecting the
oxidation of lipids and proteins due to its electronegativity. If the
lipid E protein, S protein, glycoproteins, and viral genome of the virus
are damaged or disrupted, the virus loses its activation and infectivity
(Al-Sayah, 2020).

Considering that the virus is likely to be transmitted to many
surfaces during the pandemic, frequent disinfection and sanitization of
hands, touched objects and surfaces are very important. However, the
possible effects of constantly used disinfectants on humans, animals,
the environment, and ecological balance should not be ignored.
Therefore, the development of safer and more environmentally
friendly disinfectants as an alternative will help reduce the side
effects of chemical disinfectants. Nanotechnology enables the
production of safer and healthier products in this regard. In
particular, metallic NPs such as silver, copper, and titanium have
been shown to have virucidal activity against SARS-CoV-2. According
to the studies, multifunctional disinfectants were obtained by adding
AgNPs to sanitizers using nanocolloidal techniques. The disinfectant
obtained has a broad spectrum as it shows activity against viruses,
bacteria, and fungi. The silver ions in the disinfectant inactivate the
protein structures of microorganisms by denaturing them (Rasmi
et al., 2021). Another significant topic is the size of the particles. It has
been reported that NPs smaller than 20 nm can easily bind to
pathogens including SARS-CoV-2 and cause death (Campos et al.,
2020). NanoTech Surface Company, has developed a nanopolymer-
based (containing silver and titanium dioxide NPs) disinfectant for
disinfection of coronavirus-infected surfaces. The most important
advantages of the developed disinfectant were that it was eco-
friendly, non-flammable, and biodegradable (StatNano, 2022). In
another study, nano-disinfectants that can neutralize microbes both
in the air and on surfaces have been developed. The developed nano-
disinfectant consists of various components such as deionized water,
electrolyzed water, and hydrogen peroxide can be used in COVID-19
(Vaze et al., 2019).

3 Using nanoparticles in COVID-19
testing

Nanotechnologies integrated into NPs demonstrates that
nanomaterial-based approaches can lead to an important
improvement in NP target detection performance (Medhi et al.,
2020; Chowdhury et al., 2021). Among the presented
nanotechnology approaches is the use of NPs in personalized
medicine applications that do not require complex or expensive
equipment for signal detection (Abdellatif and Alsowinea, 2021). In
addition, the ability to measure the test reading is important for
devices used in personalized medicine applications. Therefore,
integrated nanotechnologies in NPs should allow easy signal
quantification, either semi- or full-quantitatively, according to the
type of biomarker being studied (Izcovich et al., 2020). The early
diagnosis of viral is critical to reduce the possibility of widespread
outbreaks in hospitals and nearby populations. Normally, the
diagnosis strategies can be investigated in molecular tests, serologic
tests, and imaging techniques (Cascella et al., 2020). The first step of
diagnosis is based on the history of patients. The second step is
recommendation of Chest-X-Ray and CT (Computed Tomography)
to detect glass opacity and patchy bilateral shadows in the lungs
(Tavakol et al., 2021). The molecular identification of the SARS-CoV-
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2 genome in pharyngeal swab samples using a real-time back
transcription-polymerase chain effect (rRT-PCR) test is the gold
standard for COVID-19 diagnosis. rRT-PCR used to detect the
RNA genome of SARS-CoV-2, however, it requires biosafety level
2 or above (Corman et al., 2020) and results of it are obtained for up to
3 days. Therefore, it is necessary to develop new point-of-care (POC),
cost-effective, fast, and highly reliable devices. The serological tests for
specific immunoglobulin -M (IgM) and -G (IgG) has been offered as
an alternative method to decrease false negatives rate related with rRT-
PCR test but the results showed that they have limited benefit (Latiano
et al., 2021). Screening of symptomatic and asymptomatic patients is
different. Upper respiratory tract specimens such as nasopharyngeal
swabs or nasal aspirates are used to screen asymptomatic patients,
while lower respiratory tract specimens such as sputum or
bronchoalveolar lavage are used in symptomatic patients. In
addition, saliva is also used to detect respiratory viruses. The most
important advantage of using saliva is that it reduces waiting time for
patients and reduces the risk of viral transmission to healthcare
workers. It has also been reported that the rate of detecting
respiratory viruses in saliva is comparable to Nasopharyngeal swabs
(Ochani et al., 2021). All of the diagnosis tests and imaging procedures
have their advantages and disadvantages. However, nanotechnology is
the best tool to use in the development of new tests for detecting SARS-
CoV-2 (Tharayil et al., 2021).

Biosensor technology plays a significant role in diagnosing
COVID-19 (Behera et al., 2020; Choi, 2020; Leïchlé et al., 2020;
Samson et al., 2020; Abid et al., 2021; E, S, Innovation Center
et al., 2021; Maddali et al., 2021), because of their cost-
effectiveness, high sensitivity, biocompatibility, and mass
production potential (Behera et al., 2020). Biosensor is a device
containing biological sensing material combined with a
physicochemical transducer that can convert a biological signal into
a measurable and processable electrical signal (Abid et al., 2021).
Currently, various types of biosensors have great commercialization
potential to meet the disadvantages by the COVID-19 (Fathi-
Hafshejani et al., 2021). With the development of biosensor
technology, it can be said that a new era has begun in disease
diagnosis. In fact, it will be possible to keep the patient under
constant observation thanks to the biosensors placed inside the
body (Bahl et al., 2020). Here, biosensors, their working principles,
importance technologies for COVID-19, and primary application in
medicine briefly discussed.

3.1 Components and working principle of
biosensors

The block diagram of the biosensor consists of three parts: sensor,
transducer, and analyte. If the receptor is in a biomolecular structure,
it is called a bio-receptor. Bio-receptors are biomolecules (enzymes,
tissues, nucleic acids, antibodies, receptors, and organelles) that can
recognize the analyte (Behera et al., 2020). Bio-receptors with the
suitable combination transform this analyte with the analyte-specific
bio-receptor structure (Behera et al., 2020; Al-Douri et al., 2021; Wu
andWu, 2021; Yasri andWiwanitkit, 2022). Transducers, on the other
hand, are formations that transform the neither chemical nor physical
signal manufactured by the bio-receptor when recognizing the analyte
into electrical signals (Behera et al., 2020). In biosensors; bio-receptor
materials send detectable signals to the transducer which can be used

in the system as piezoelectric, optical, electrical, electrochemical,
thermal, and others. The bio-receptor and the transducer are
associated to each other by an appropriate neither physical nor
chemical pathway (Behera et al., 2020; Al-Douri et al., 2021; Wu
and Wu, 2021; Yasri and Wiwanitkit, 2022).

The transducer is one of the most important element of biosensor
(Zhao et al., 2021a). The moderately deliberate atmosphere of the
biosensor reaction clearly relieves electrical noise purification anxiety
(Pang et al., 2021). An analog wave or a signal is converted in a digital
arrangement and recognized to a microprocessor progressive output.
Here, information is processed, tailored to preferred units, and sent to
data storage. Physical type biosensor applications are able to offer a
direct advantageous effect in tackling challanges arising from the
COVID-19 (Ashraf et al., 2021).

3.2 Biosensor technologies and COVID-19

Biosensor technologies have an essential role in diagnosing
COVID-19 (Choi, 2020). In the last 20 years, the biosensor-based
instruments have been accelerated in medical diagnostics, because of
their biocompatibility, cost-effectiveness, high sensitivity, and
potential for mass production (Bahl et al., 2020; Xu and Li, 2020;
Mobed and Sepehri Shafigh, 2021; Zare et al., 2021). Currently, various
types of biosensors have great commercialization potential to meet the
challenges posed by the COVID-19 (Murugan et al., 2020; Fani et al.,
2021; Saki et al., 2021). Certainly, these sensors have enormous
potential in other fields, containing medical diagnostics, and
warrant further research (More, 2021; Narita et al., 2021; Wu and
Wu, 2021).

Industry 4.0’s digital technologies have the ability to detect
COVID-19 symptoms (Wu and Wu, 2021). This helps to avoid
confusion and predict the probability of contracting disease
(Sharma et al., 2021). Thermometric and piezoelectric biosensors
are types of physical sensors (Bahl et al., 2020). Further sensing is
accomplished using NPs, while thermometric biosensors work to
measure temperature changes associated with biological samples
(Wu and Wu, 2021). Thermal biosensors are generally used to
measure cholesterol (Dinnes et al., 2021). These biosensors can be
easily worn on a daily basis and can be used with everyday clothing;
t-shirts, pants, headphones, and wrist watches. Therefore, thanks to its
easy use, the real-time health status of the patient can be checked
(Kudr et al., 2021).

Various types of biosensors are present to supply medical care
benefits to humans (Abid et al., 2021; Wu and Wu, 2021).
Electrochemical, optical, physical, and wearable biosensors are the
main categories of biosensors (Ribeiro et al., 2020; Shrivastav et al.,
2021). Researchers combined nanotechnology with traditional optical
biosensor technology (Murugan et al., 2020; Nag et al., 2020) to
successfully detect SARS-CoV-2. A new nanotechnology-based
biosensor named ‘Graphene-Field-Effect Transistor biosensors’ (Xu
S. et al., 2021) can detect changes in the environment on their
surface and provide ultra-sensitive and low-noise sensing. However,
the performance of the developed nanotechnology-based biosensor is
specified using antigen protein, cultured virus, and nasopharyngeal
swab samples from COVID-19 patients (Vashist et al., 2012;
Maheshwari et al., 2021). Nanocomposites based biosensors are able
to be used tomonitor and re-transport infections in food for COVID-19
patients. Nanomaterials increase their adaptability and sensing abilities
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(Huang et al., 2021). A newly released biosensor technology has been
developed for COVID-19 that illustrated a high value of specificity and
sensitivity (LizhouXu and Shoaie, 2020). This optical biosensor contains
a gold nanostructure on a glass substrate. In the future, it is foreseen to
develop a biosensor that can be used in busy places to determine the
presence of coronavirus in the environment and measure its
concentration in the air in real time, and the recorded data will be
sent wirelessly and monitored in real time (Shand et al., 2022).

3.3 Lateral flow tests and COVID-19

Various types of biosensors have been advanced to determine
biomarkers linked with various diseases (Gupta et al., 2020; Kim et al.,
2021; Pérez-García et al., 2021). Lateral flow tests (LFTs) (Cui and
Zhou, 2020; Rosati et al., 2021), which are paper-based devices, are
able to meet the needs wait of a biosensor (specific identification of
target analyte, low cost, stability, user-friendly test format, fast, and
low sample volume) (Ozturk et al., 2021). In addition, proteins, nucleic
acids, and whole cells are biomarkers of LFTs, and they serve as POC
testing (Mlcochova et al., 2020). This can provide support for patients
and personalized medicine. Paper-based POC immunoassays,
particularly LFTs, have received great attention because of the
requirement for joint qualitative and quantitative biosensing
applications. For the purpose of diagnosing human health, different
LFTs have been commercialized for the detection of different markers
(Violan et al., 2021). Nanomaterials have been used for the
development of POC diagnostics and delivery strategies. Despite
the numerous benefits of LFTs, they have some challenges, such as
difficulty of sensitivity detection of a particular target analyte without
applying signal amplification strategies (Rodriguez-Manzano et al.,
2020). Availability of cost-effective rapid diagnostic testing is very
important for physicians in emergency departments, clinics and
hospital. These diagnoses allow nurses and doctors staff to simply
prioritize patients, and hinder further spread of disease (Uzay and
Dinçer, 2022).

3.3.1 Observation and monitoring
Rapid identification of the disease is one of the factors preventing

the spread of a mass infection. The success of a system depends on
effective collaboration and communication between federal and state
public health laboratories, hospitals, government agencies, and
communities. WHO testing should be widely used to stop this
epidemic (Bonnechère et al., 2021).

3.3.2 Therapeutics
Once individuals with COVID-19 are identified, patients need to

be treated. These treatments can inhibit the replication of SARS-CoV-
2 in the host. Fundamental studies of nano-bio interactions are about
explaining how SARS-CoV-2 infects its cells (Singhera et al., 2021).
Nucleic acid amplification tests (NAATs), such as polymerase chain
reaction (PCR), primarily detect viral genomic RNA encoding S and N
proteins (Kamat et al., 2021). Antigen tests, such as LFTs, primarily
detect the N protein. NAATs are the gold standard diagnostic for
SARS-CoV-2 infection (Tyagi et al., 2020). SARS-CoV-2 has
developed many mutations that can result in immune escape
(Moabelo et al., 2021). Since NAATs use nucleic acid primers to
recognize and amplify their targets, the incorporation of one or more
base substitutions into the targeted nucleotide sequence is potentially

sufficient to inhibit the reaction. LFTs are inexpensive, user-friendly
and rapid diagnosis that can be used at the POC (Jain et al., 2020).

In comparison with the S protein, the N protein is relatively
conserved from variant to variant (Devi et al., 2021; Weinberg et al.,
2021). Consequently, detection of N protein instead of the S protein
should result in a test that is more resistant to diagnostic evasion. In fact,
every rapid detection test approved by the FDA under Emergency Use
Authorization since 2020 is still recommended for SARS-CoV-
2 detection (Tinberg et al., 2013). Companies have developed rapid
tests using mAbs previously isolated from SARS-CoV N protein
immunizations (Gage et al., 2021) However, thanks to continuous
accumulation of mutations in the N protein may be used to maintain
high diagnostic efficiency for improved mAbs and diagnostic tests
specifically for SARS-CoV-2 (Tinberg et al., 2013; Sandersjöö et al.,
2015; Nilsson et al., 2017; Yadav N. et al., 2020; Gage et al., 2021).
Prototype LFTs are available for detection of SARS-CoV-2 N protein in
clinical samples (Jain et al., 2020; Dowlatshahi and Abdekhodaie, 2021).

4 Developing a vaccine against
COVID-19

Vaccines are very special and an essential component of public
health, as they protect individuals and communities (Sebastian et al.,
2020; Excler et al., 2021). Edward Jenner made the first successful
vaccine study in the late 1700s. To date, vaccine development and
large-scale immunization campaigns have been used by society against
worldwide epidemics of infectious diseases (Verbeke et al., 2021).
There are some criteria for developing an ideal vaccine. The developed
vaccine must be safe and highly effective, even in
immunocompromised individuals. In addition, it should be
inexpensive, free from toxicity/side effects, capable of long-term
protection, and high thermal stability (Malik et al., 2021).

The development of a new vaccine is a complicated process that
takes 10–15 years (Sebastian et al., 2020). The economic situation of the
countries has a very important role in the creation of a new sustainable
vaccine development model, in which significant investments make and
which includes close cooperation between the public and private sectors.
In low- andmiddle-income countries, most vaccines for diseases cannot
be developed due to weak or lacking market incentives (Rappuoli et al.,
2019). The process of the development of vaccines is mainly based on
four different stages: discovery, pre-clinical development, clinical
development (Phase I, Phase II, and Phase III), and post-marketing.
However, unlike traditional vaccine development processes, it has
enabled the rapid development of COVID-19 vaccines based on the
knowledge available in vaccines developed for COVID-19 (Figure 6)
(Ndwandwe and Wiysonge, 2021).

In a fast-paced research environment such as the COVID-19
pandemic, using samples collected in December 2019, and then
Edward C. Holmes et al. published the full genome sequence of
SARS-CoV-2 on virological.org on 10 January 2020. On 11 January
2020, vaccines against COVID-19 began to be developed, when the
genome sequence of SARS-CoV-2 made available by the United States
(US) NIH (Haque and Pant, 2020; Wang C. et al., 2020). The COVID-
19 vaccines currently approved for use in the US are Pfizer/BioNTech,
Moderna, Novavax, and Johnson & Johnson’s Janssen (CDCP, 2022).
In the United Kingdom Moderna, Oxford/AstraZeneca, and Pfizer/
BioNTech vaccines currently approved (National Health Service,
2022). In Türkiye vaccination first started with the inactivated
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FIGURE 6
The process of the development of vaccine for both conventional and COVID-19.

FIGURE 7
Current stage of development of clinical 11 November 2022 (Recreated from WHO (WHO, 2022b).
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CoronaVac, then with the mRNA BNT162b2 vaccine (Batibay et al.,
2022). According to the WHO COVID-19 Dashboard on
19 September 2022, a total of 12.640.866.343 vaccine doses were
administered (WHO, 2022b).

4.1 The types of vaccines for COVID-19

Adjuvants plays important role for enhancing vaccine efficacy
(Lee et al., 2022). Rino Rappuoli and colleagues introduced the
genome-based reverse vaccination method with strong antibody
responses. However, investigation of other factors (i.e. adjuvants
and antigen delivery), has gained momentum as they influence the
induction of immune responses and immunological memory,
which are important for vaccine efficacy (Raeven et al., 2019).
Alum, complete Freund’s adjuvant, thiomersal, incomplete
Freund’s adjuvant, montanide, lipovant, and adjuvant 65 are
currently available adjuvants used to develop a subunit vaccine
(Nevagi et al., 2019). In addition to finding new adjuvants,
researchers are also modifying existing adjuvants to increase
immune-inducing ability and reduce toxicity. It is known that
their modification of the epitope further enhances the
immunogenicity of subunit vaccines, increasing stability, half-
life, and solubility which collectively increase the Th1 response
(Mekonnen et al., 2022).

Multiple methodologies have been adopted for the development of
vaccines against SARS-CoV-2, including both next-generation and
conventional techniques (Malik et al., 2021). Researchers around the
world have been racing to develop COVID-19 vaccines, with more
than 175 candidate vaccines in the clinical evaluation stage and
another 199 vaccines in preclinical evaluation as of 11 November
2022 (WHO, 2022b) (Figure 7). Nowadays, more than 150 companies
or educational institutions offer are making efforts to combat the
current coronavirus pandemic with strategies (Malik et al., 2021) such
as live attenuated vaccines, inactivated vaccines, subunit vaccines,
vector based vaccines, DNA-based vaccines, and mRNA-based
vaccines.

4.1.1 Live attenuated vaccines (LAV)
Chemically inactivated and genetically engineered vaccines have

been developed since 1896, and up to 15 LAVs (against 12 viral and
3 bacterial diseases) have been used (Pöyhönen et al., 2019).
Composed of live but attenuated microorganisms that aim to
activate innate immune responses, LAVs do not cause disease in
humans but also contain replication-competent viral vectors. LAVs
can induce prolonged, robust cellular and humoral immune responses
without the need for adjuvants (Mok and Chan, 2020). LAVs can be
much more effective compared to other vaccines as they are similar to
excellent mRNA vaccines or vector vaccines and can unparalleled
manufacture multiple, endogenous and relatively large amounts of
viral antigens. However, LAVs are not suitable for viruses that
reproduce poorly in in vitro analysis (Chen, 2022). The bacille
Calmette-Guerin (BCG) vaccine has been administered for the
prevention of tuberculosis (Brooks et al., 2021). However, BCG can
lead to heterologous immunity by the mechanism of stimulation of
antigen-independent B and T Cells, resulting in reduced viral load of
SARS-CoV-2 (Khera et al., 2021).

4.1.2 Inactivated vaccine
Purified inactivated vaccines used in conventional vaccine

development have been found to be safe and effective in preventing
diseases caused by pathogens such as influenza virus and polio virus
(Gao et al., 2020). CoronaVac, which is an inactivated whole virus
vaccine adjuvanted with aluminum hydroxide and developed by
Sinovac Life Sciences (Beijing, China) for COVID-19, was one of
the first vaccines to be distributed globally (Wilder-Smith and
Mulholland, 2021; Wu Z. et al., 2021). PiCoVacc (Gao et al., 2020),
Covaxin (BBV152) (Ahmed et al., 2022), and CoviVac (Kozlovskaya
et al., 2021) are other candidate inactivated SARS-CoV-2 vaccines.

4.1.3 Subunit vaccine
Subunit vaccines show a new generation of vaccines that use

pathogenic components (antigens) in parasites, bacteria, or viruses to
stimulate adaptive immunity against them. Recently, protein and
peptide antigens are in use worldwide (Malik et al., 2021).
Characteristic subunit vaccines are built on antigens that are much
safer and highly purified than whole organism-based preparations. In
these vaccines, adjuvants are often included in the vaccine formulation
to improve an immune response. One of the biggest disadvantages for
subunit vaccine is developing adjuvants with no orminimal toxicity, as
currently available adjuvants often lead to toxicity and reactogenicity
(Nevagi et al., 2019). In the literature, the S1 domain and its RBD have
been shown to induce much higher IgG and IgA antibody levels when
immunized in mice and neutralize SARS-CoV-2 more efficiently when
adjuvanted with alum. However, it is stated that Th1 response-prone
adjuvants should be used for S1-based subunit COVID-19 vaccines to
reduce the potential risk of increased antibody-induced infection
(Wang et al., 2021). StriFK (Wu Y. et al., 2021), S-Trimer (Liang
et al., 2021), ZF 2001 (Yang et al., 2021), and Novavax (Callaway and
Mallapaty, 2021) are other types of subunit vaccine candidates.

4.1.4 DNA vaccines
DNA vaccines are vaccines that produce antigens by causing a

protective immunological response and is able to stimulate a wide
variety of immune responses, and the antigen encoded by the DNA
vaccine is injected into cells by introducing an adjuvant that induces a
concerted immune response (Duman et al., 2021). Inovio
Pharmaceuticals has already developed experimental vaccines
(INO-4700) against COVID-19 (Smith et al., 2020). The S protein
is used as the antigen of all DNA vaccines currently being tested in
clinical trials (Silveira et al., 2021). However, since 2016, DNA vaccines
have not been released in the US (Duman et al., 2021).

4.1.5 Vector based vaccines
The viral vector acts as a delivery system, providing a means to

attack the cell and insert the code for SARS-CoV-2 antigens that it
does not cause illness by being chemically weakened. In this way, the
body is able to be safely mount an immune response without
contracting the disease (Ndwandwe and Wiysonge, 2021). Johnson
& Johnson’s Janssen vaccine (Yang et al., 2022) and Sputnik V
vaccines are vector based vaccines. Gam-COVID-Vac (Sputnik V),
a heterologous recombinant adenovirus-based vaccine, is known to
show a good safety profile in participants in phase 1/2 clinical trials
and induce potent humoral and cellular immune responses (Logunov
et al., 2021).
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4.1.6 mRNA vaccines
Production of mRNA can be accomplished in a one-step

enzymatic reaction using a capping analog, or in a two-step
reaction in which closure is accomplished using a vaccine capping
enzyme. Purification on a larger scale is achieved using well-
established chromatographic strategies (Rosa et al., 2021). Moderna
(mRNA-1273) and Pfizer-BioNTech (BNT162b2) have taken into
clinical trials at an unprecedented rate in less than 1 month,
obtaining clinical use authorization within 1 year, breaking the
latest 4-year speed record held by the mumps vaccine (Ziqi et al.,
2022), and CVnCoV, moved into Phase III clinical testing as a mRNA
vaccine candidate (Verbeke et al., 2021).

4.2 Nanotechnology and COVID-19 vaccines

Nanotechnology allows the development of nanoscale systems
derived from interactions between surfaces and biomolecules. The
most obvious approach to nano-sized vaccines is based on VLPs,
which can achieve enhanced safety (compared to all virus-based
vaccines), a marked immunogenicity (relative to soluble antigens)
due to their complexity, and potent and protective immune responses
(Palestino et al., 2020). The role of nanotechnology in COVID-19 is
crucial for designing effective nanocarriers to counter the traditional
limitations of nanointervention, antiviral, and biological therapeutics
(Chauhan et al., 2020). Unlike inactivated or killed virus vaccines,
mRNA and other bioengineered vaccines can be quickly and
inexpensively modified to match mutated antigenic epitopes
(Shapiro, 2021). Due to the presence of RNA-degrading enzymes
and their inability to easily pass through the negatively charged cell
membrane, LNP-based delivery systems have been designed to
maintain mRNA integrity and promote its intracellular uptake
(Khurana et al., 2021). Moderna vaccine formulation contains lipid
nanoparticle-encapsulated mRNA that encode S protein (Thanh Le
et al., 2020). The use of engineered nanocarriers to control and
eradicate the spread and recurrence of this pandemic has the
potential to require a safe and effective vaccine strategy (Chauhan
et al., 2020). It is significant to the rapid approval of two mRNA
vaccines for nanotechnology’s common use in COVID-19, including
protein NPs (for the delivery of protein vaccines), lipid NPs (for
formulation with mRNAs), and nanobodies (as unique therapeutic
antibodies) (Du et al., 2022). NPs are considered as carriers to which
multiple ACE2-based peptide inhibitors are attached to their surface.
It is important to design NPs vaccine carriers with greater protection,
durability, immunization and greater accessibility to target cells of the
COVID-19 vaccine (Jafari et al., 2022).

5 Nanomaterial-based drug delivery
systems

At the beginning of the COVID-19, treatment options were quite
limited. For this reason, many researchers, including clinical
researchers, have made continuous efforts to develop new
therapeutics and vaccines. In the initial course of the disease,
antiviral agents, inflammation inhibitors, and hyperimmune
immunoglobulins were used. While antiviral agents stop the
progression of the disease, it has been observed that the use of
both antiviral and immunomodulators gives good results in

critically infected patients (Cascella et al., 2020). The main problem
of antiviral agents is that they cause cell cytotoxicity. In addition, the
mutagenic structure of the virus causes loss of efficacy of traditional
therapeutics. However, if the virus mutates, they lose their
effectiveness. Therefore, the development of new antiviral-based
materials is critical. Nanotechnology offers interesting and valuable
solutions in this regard. Therefore, existing approaches should be
advanced based on nanotechnology (Campos et al., 2020).

Nanotechnology has wide applications in the treatment of
COVID-19, and with its potential to inhibit virus-cell interaction,
transcription, membrane fusion, cell internalization, translation, and
viral replication as well as activating intracellular mechanisms
(Mainardes and Diedrich, 2020). Due to composition,
luminescence, shape, huge surface-to-volume ratio, tunable size,
and the ability to reveal multiple interaction sites on the surface,
inorganic NPs (INPs) such as mesoporous silica NPs (MSNPs)
(Abdelhamid and Badr, 2021; Abdellatif and Alsowinea, 2021;
Rasmi et al., 2021), gold NPs (AuNPs) (Miró et al., 2021), iron
oxide NPs (IONPs) (Subhash and Chaudhary, 2021), silver nano-
particles (AgNPs) (Douaki et al., 2020). On the other side, organic NPs
(polymeric nps, lipid-based NPs, dendrimers, liposomes) are also
advantageous because of the possibility of site-specific targeting of
drugs, biodegradability, controlling drug release, biocompatibility, and
non-toxicity (Abhyankar et al., 2021; Refaat et al., 2021; Thi et al.,
2021), and nano micelles (Skwarek et al., 2021).

Biodegradable polymers approved by the FDA and the European
Medicines Agency are used in the development of NPs for the delivery
of new antiviral molecules. Polymeric nanoparticles are used against
viral diseases as also they can be designed to achieve specific targets
and inhibit virus binding to host cell receptors (Kamat et al., 2021;
Pelosi et al., 2021; Li et al., 2022; Mazayen et al., 2022). It is necessary to
improve the safety of antiviral drugs and overcome cellular drug
resistance (Rana, 2021). Mesoporous silica NPs, which could supply an
excellent platform to treat COVID-19 by preventing viral replication,
have pores of adjustable size that allow molecules to dock inside and
outside for co-delivery (Karaman et al., 2021; Tiamiyu et al., 2021; Xu
L. D. et al., 2021).

Carbon nanotubes (CNTs) exhibit limitations in terms of toxicity
for the treatment of COVID-19 (Sadighbayan et al., 2020; Jeong et al.,
2021; Joshi et al., 2021). When exposed to the lungs, they activate
macrophages in the lower respiratory tract, causing fibrosis and
collagen formation in the lesions (Bisht et al., 2021; Galal et al.,
2021; Özmen et al., 2021). Lipid-coated MSNPs containing
antiviral agent (ML336) were developed as a strategy to improve
antiviral circulation time and biocompatibility. In vitro results
revealed a dose-dependent virus inhibition and an additional
release of ML336 after cell endocytosis, while in vivo results
showed that NPs showed significant antiviral activity and no
toxicity (Siddiquie et al., 2020; Balkrishna et al., 2021; Duan et al.,
2021).

Dendrimers with compact spherical structure and highly branched
3D structures have unique physicochemical properties such as
solubility, low polydispersity, effective drug encapsulation capacity
(Jana et al., 2019; Witika et al., 2020; Mazayen et al., 2022),
biodegradability, and biocompatibility (Paull et al., 2020; Khaitov
et al., 2021). The ability of dendrimers to form strong interactions
with viruses may increase antiviral activity, making them promising
systems against viral infections (Yuliani, 2021; Zhang D. et al., 2021;
Zhang et al., 2022). Composed of synthetic or natural phospholipids,
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cholesterol, and sphingolipids, liposomes are bilayer structures used
for drug delivery (Abhyankar et al., 2021; Refaat et al., 2021; Thi et al.,
2021). Liposome-based carriers are used to encapsulate antivirals for
the treatment of infected cells (HuangW. C. et al., 2020; Khurana et al.,
2021; Pascolo, 2021; Tenchov et al., 2021; Vahedifard and
Chakravarthy, 2021).

5.1 Cell-based therapy and COVID-19

Cell therapies are of great importance in the treatment of severe
COVID-19 manifestations because of their personalized and
regenerative functions (Shih et al., 2020). While the subacute and
chronic sequelae of COVID-19 may be important data, it is vital that
all research focuses on finding targeted therapies that not only reduce
acute injury but also restore physiological function (Maurya et al.,
2020; Shih et al., 2020; USA National Institutes of Health, 2020; Rafat
et al., 2021; Vaka et al., 2022). Thanks to ACE2 (Ni et al., 2020),
transmembrane protease-serine-2 (TMPRSS2), endosome-proteases-
cathepsins B/L (H.-I. et al., 2020; USA National Institutes of Health,
2020) and Neuropilin 1 (NRP1) (Cantuti-Castelvetri et al., 2020; Daly
et al., 2020; Abebe et al., 2021) virus can be taken up into the cell.
SARS-CoV-2 selects and modifies various cellular proteins and
pathways, many of which have not yet been fully clarified
(Beyerstedt et al., 2021). Information from other coronaviruses has
demonstrated the presence of CD147 and 78 kDa glucose/regulated/
protein (Ibrahim et al., 2020; Sabirli et al., 2021) as putative alternative
receptors. However, further research is being actively exploring the
bulk tissue distribution of these factors correlates with viral tropism as
well as illness symptoms (Abassi et al., 2020; Snyder and Johnson,
2020; South et al., 2020; Zhang et al., 2020; Gottschalk et al., 2021;
Kragstrup et al., 2021).

6 Future research

Nanomedicine is a growing field that includes the application of
nanotechnology to diseases; diagnose-treat-prevent (Tharayil et al.,
2021; Yang, 2021). It incorporates a number of disciplines including
material science, biology based fields (virology andmolecular biology),
and more to provide innovative disease management strategies. Many
drugs are not specific to their targets, resulting in undesirable side
effects and toxicity in patients (Rasmi et al., 2021; Vahedifard and
Chakravarthy, 2021). Nanotechnology may allow targeted drug
delivery to a specific cell population, as in the novel targeted
cancer therapies. In addition, Pfizer and Moderna overcome
challenges with the physical properties of the mRNA vaccines (i.e
size and electrostatic charge, which hinder RNA’s ability to generate an
immune response) with using particular type of NPs. Even though
there are legitimate concerns about the price and safety of NPs in
medicine, nanotechnology has been used valuably to increase vaccine
efficiency against COVID-19 (Ruiz-Hitzky et al., 2020; Tharayil et al.,
2021; Yang, 2021).

Nanotechnology provides benefits and simplifies the overall
healing of pharmacological drug properties through nanosystems
are used for drug encapsulation (i.e., liposomes, metallic/polymeric-
NPs, and micelles). Antiviral agents for NPs can target binding. The
major reason why inorganic NPs need modification is concerns about
toxicity. Due to the close morphological and physicochemical

properties of SARS-CoV-2 and synthetic NPs, it allows NPs to be
an effective intervention method (Wang J. et al., 2020; Xie et al., 2020;
Behbudi, 2021; Doagooyan, 2021; El-Megharbel et al., 2021).

6.1 Robotics applications in COVID-19

Robots can take on human-like activities and can be programmed
profitably to replace some human interactions (Javaid et al., 2020;
Hussain et al., 2021). They play a variety of roles in the medical field to
perform specialized human treatment and surgery. Robotic
technology helps to make up for the lack of doctors, it can also
assist a surgeon during a complex operation and perform tasks that are
risky for humans as in remote locations (Javaid et al., 2020). Certain
robots are useful in managing COVID-19 patient cure in analysis
(Javaid et al., 2020; Zhao et al., 2021b; Doğuç, 2021; Sarker et al., 2021;
Shorten et al., 2021). For example, this technology is useful for
overcoming various difficulties during the quarantine situation.
Robots help maintain social distancing and monitor large
populations. They are also used for packaging necessary medical
equipment. Moreover, robots help incapacitated people and play an
important role in their recovery process (Javaid et al., 2020; Firouzi
et al., 2021; Khamis et al., 2021; Mbunge et al., 2021; Sarker et al., 2021;
Shorten et al., 2021).

6.2 Tissue engineering and COVID-19

Tissue engineering (TE) is a field with a unique set of tools and
technologies to develop diagnostics and treatments during the COVID-
19 (Aydin et al., 2021; Shafiee et al., 2021). Tissue engineering is
pioneered by the pandemic and can play an important role in
preventive strategies and identifies methods that can be applied to
the current COVID-19 crisis as well as future viral outbreaks
(Harikrishnan and Krishnan, 2020; Tatara, 2020; Softa et al., 2021).
TE covers the behavior and growth factors phenomenon of TE in vitro
(Harikrishnan and Krishnan, 2020; Tatara, 2020; Aydin et al., 2021;
Softa et al., 2021). This field of TE is able to support the treatment of
COVID-19 patients and help combat current crises. Current TE studies
report the greatest challenges faced during the COVID-19 situation,
important developments in TE, and in medicine are listed in
chronological order, the positive effects of TE during the COVID-19
crisis. The primary importance of this branch of science is to offer
biological alternatives that can fully or partially fulfill the functions of
damaged, dysfunctional organs or tissues in humans. It is particularly
useful for the supply of convalescent plasma to patients during COVID-
19. A donor is chosen based on a strictly confirmed case of COVID-19
transmission. The donor must confirm a negative molecular
examination that does not show any symptoms (Harikrishnan and
Krishnan, 2020; de Melo et al., 2021; Shafiee et al., 2021). With the
contributions of talented scientists, TE’s future potential for the
COVID-19 will be the realization of successful initiatives. More work
needs to be done in the areas of healthcare and different methods to
develop diagnostic products such as PCR kits and to implement TE in
the COVID-19 (World Health Organization, 2020; Wang, 2021; Yunus
et al., 2021; Zhang T. et al., 2021).

The application of TE provides extended support for the
development of diagnostic products that help improve clinical
processes (Tatara, 2020; Shafiee et al., 2021). Researchers use the
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TE animal model to describe it. In this ongoing COVID-19, TE has an
important role in the application of the Bioscaffold matrix, the
treatment of COVID-19 infection, the healthy functioning of the
body and the examination of healing mechanisms. In the future,
TE will play an important role in saving the life of a COVID-19 patient
(Malavazos et al., 2020; Tatara, 2020; Bailey et al., 2021; Dorward et al.,
2021; Kerch, 2021).

6.3 Antimicrobial nanotechnology for
COVID-19

Antimicrobial studies have several roles during the pandemic.
Primary role, agents such as azithromycin, lopinavir, and ritonavir as
well as antivirals and remdesivir are being investigated in clinical trials
as potential treatments for SARS-CoV-2. However, the trials did not
clearly demonstrates improved clinical results compared to the
standard treatment methods (Anvar et al., 2021; Erkoc and
Ulucan-Karnak, 2021; Khorsandi et al., 2021). Second,
antimicrobials are directly related to COVID-19, they are widely
prescribed for the management possible or approved bacterial
infections that can happen during long-term acceptance to
intensive care. Available proof indicates that bacterial and/or fungal
co-infection is low in patients and diseases with COVID-19. This is
due to the lack of rapid diagnosis resulting in an increase in
unnecessary antimicrobial use, which resulted the future risk of
antimicrobial resistance (AMR) through the selection of
Enterobacteriaceae that produces carbapenemase (Kaur et al., 2020;
Kchaou et al., 2020). The potential avoidance of healthcare by patients
due to self-isolation healthcare due to service changes limits the
requisition but also limits the access to essential anti-microbials.
Increased use of telemedicine, along with continued public interest
discourses on the role of antibiotics in viral infections may reduce the
use of antimicrobials and AMR (Karaman et al., 2021). In addition to
this, hand hygiene can prevent the transmission of AMR as well as
reduce the diseases that can lead to antibiotic use. This will likely have
a significant impact on countries with limited resources and large
numbers of endemic infectious diseases. After the initial global
increase in COVID-19 cases, the importance of such measures is
once again increasing until vaccine implementations take place. Delays
in elective surgery and cancer treatment will increase the pressure,
potentially resulting in increased healthcare needs and increased use of
antimicrobials (Almeida et al., 2020; Johnson, 2021; Knight et al., 2021;
Lai et al., 2021; Schouten et al., 2021; Khan et al., 2022).

7 Conclusion

Nanotechnology offers new solutions during fight against
COVID-19 by providing better improved forms of treatment,
prevention, and diagnosis. Advances in bio/nanotechnology and
advanced nano/manufacturing, combined with open reporting and
data sharing, lay the foundation for the rapid development of
innovative technologies that will have an impact during the
COVID-19 pandemic. Thanks to the increasing relationship
between the COVID-19 pandemic and biotechnological methods,
we should say that these biotechnological methods are used in the
majority of vaccines developed for COVID-19. In addition, there are
different approaches in the diagnosis and treatment of SARS-CoV-2.
There still needs to be some development work done—for example, a
system that concentrates aeroceles in the air and releases RNA from
viruses. It is thought that the discovery of new methods with the
development of technology and the use of these discovered methods
for the COVID-19 will have an important share in the fight against this
pandemic.
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