
Citation: Avcı, B.C.; Kesgin, E.; Atam,

M.; Tan, R.I. Spatial-Temporal

Response of Sediment Loads to

Climate Change and Soil

Conservation Practices in the

Northern Aegean Watershed,

Türkiye. Water 2023, 15, 2461.

https://doi.org/10.3390/w15132461

Academic Editors: Nektarios

N. Kourgialas, Ioannis Anastopoulos,

Alexandros Stefanakis and Achim

A. Beylich

Received: 29 May 2023

Revised: 21 June 2023

Accepted: 25 June 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Spatial-Temporal Response of Sediment Loads to Climate
Change and Soil Conservation Practices in the Northern Aegean
Watershed, Türkiye
Bekir Cem Avcı 1, Erdal Kesgin 2,* , Masume Atam 1 and Remziye Ilayda Tan 3

1 Department of Civil Engineering, Bogazici University, Sariyer, 34342 Istanbul, Türkiye;
avci@boun.edu.tr (B.C.A.); masume.atam@boun.edu.tr (M.A.)

2 Department of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
3 Department of Civil Engineering, Fatih Sultan Mehmet Vakıf University, Beyoglu, 34210 Istanbul, Türkiye;

ritankesgin@fsm.edu.tr
* Correspondence: kesgine@itu.edu.tr

Abstract: Climate change and agricultural activities are significant sources of stress to the natural
environment and water resources. These also affect erosion and the associated estimation of sediment
yields, which is also a crucial task in the hydrological models. The presented study is significant
for the development of sustainable watershed management practices. It also aims to determine
the effects of climate change and different agricultural best management practices (BMPs) on the
sediment loads of the North Aegean Basin in Türkiye by using the Soil and Water Assessment Tool
(SWAT) model. While sediment calibration was performed for 2014, streamflow calibration and
verification were performed using the SWAT Calibration and Uncertainty Program (SWAT-CUP)
for the period 2012–2013 and 2014–2015, respectively. The obtained results showed that the climate
change scenarios reduce the surface waters of the basin and sediment yield in accordance with the
hydrological transport processes. During the 2012–2030 time period, runoff in the basin for the
RCP4.5 and RCP8.5 climate change scenarios decreased by 38.5% and 31.8%, respectively, and the
basin sediment yield decreased by 55.7% and 50.7%, respectively. The sediment yields to water
resources had distinctive reductions due to BMPs such as zero tillage, vertical tillage, cover crop,
and terracing. Considering the RCP4.5 and RCP8.5 scenarios, BMPs reduced the sediment yield in
the range of 0.93–4.03% and 0.89–3.85%, respectively. Determining the sediment transport by using
hydrological modeling and the effects of climate change for different agricultural practices on erosion
will be useful for decision-makers.

Keywords: soil erosion; sediment yield; SWAT; climate change; BMP

1. Introduction

Erosion is a serious issue that threatens water and soil resources and precautions
need to be taken. Hydrological conditions and erosion vary depending on changing
environmental conditions that are also affected by numerous factors such as changes in
land use, agricultural practices, and the climate crisis [1,2]. Therefore, changes in cloud
microstructure, solar radiation, precipitation, and temperatures due to the climate crisis
and intensification of agricultural practices cause an increase in nutrient materials such
as nitrate and phosphorus in water resources [3–5]. These situations cause changes in
basin hydrology and ecological functions. In addition to environmental problems, it
also brings economic and social problems [6–8]. In order to protect and sustain water
resources, sediment transport must be controlled and appropriate measurements taken
against erosion in critical areas. In the present study, the effects of climate change and
soil conservation practices on sediment yield were investigated. Determining the best
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management practices by considering the effects of climate change contribute to the solution
of basin erosion problems.

Erosion has a significant impact on water resources. Natural disasters such as land-
slides, floods, and earthquakes can cause ground deformation, but human actions such as
urbanization and mining have a great impact on erosion (Figure 1). Especially in recent
years, the increase in human effects and pressures on the environment (such as agricultural
practices, overgrazing, and deforestation) caused both the rapid depletion of environmental
resources and increased sediment transport in the basins [9–11]. Rapid population growth
also increases the demand for food, which intensifies agricultural practices and causes
sustainable development problems [12]. Intensive agricultural activities increase soil ero-
sion and cause the soil to lose water and nutrients [13,14]. Cultivated areas, forests, and
wetlands have especially distinctive changes in the dynamics of organic and inorganic sub-
stances in the soil [15]. Changing nutrient ratios also affect soil-dwelling organisms [16]. In
addition to the intensive use of fertilizers, some pollution, such as point-source wastewater
and antibiotic resistance, threatens public health [17].
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Erosion is also the main component of non-point pollution [18]. Therefore, erosion is
one of the most crucial problems in water quality because the sediment is transported to the
aquatic environments by the effect of wind and surface flow [19]. The downstream of the
ecosystem is harmed by the sediment that is transported into aquatic environments. It also
causes eutrophication and harmful algae blooms by increasing nutrient pollution [20,21].
In addition to water pollution, soil pollution is an important environmental problem, and
the cleaning of polluted soil resources is a challenging process [22]. Furthermore, erosion
causes the degradation of soil structure, reduces arable land capacities, lowers crop yields,
and increases production costs [11,14]. Increasing sediment yield reduces the dam storage
capacity, adversely affects dam efficiency, and increases the risk of flooding [2]. In addition,
sediment accumulation in bridge piers, channels, and culverts causes flow imbalance.

It is necessary to determine the sediment yield in order to determine the areas where
erosion is high and to carry out erosion-reducing management practices in such areas. It is
a clear fact that hydrological models are used to analyze sediment yield. They are useful
tools that provide an understanding of the physical, chemical, and biological processes of
the basin. With the help of these models, sediment transport and accumulation processes,
especially those caused by precipitation and runoff, are predicted [2]. There are many
studies in the literature to understand climatic and environmental changes [23,24]. Espe-
cially in determining sediment yield, the SWAT model is widely preferred [14,19,25,26].
Most of these studies demonstrated that the model is successful in simulating watershed
erosion [27–29]. The SWAT model is a physically based hydrological model that operates on



Water 2023, 15, 2461 3 of 19

daily, monthly, and yearly periods [30]. In addition, there are many studies in the literature
where the SWAT model is used for different purposes; it can simulate the effects of climate
change and land use changes [18] and non-point-source pollution (agriculture and livestock
practices) [31,32] on watershed hydrology. Additionally, it is widely used to determine the
best management practices of watersheds [3,33].

Consequently, in the present study, the medium-term effects of climate change and
various BMPs on the sediment yield of the North Aegean Basin were investigated. There
are numerous studies in the literature regarding investigating the impact of climate change
on the water potential of the North Aegean Basin [34,35]. There is also a study examining
the effects of BMPs on the surface water quality of the North Aegean Basin [3]. However,
there are no comprehensive studies including both effects of climate change and BMPs
on sediment yield in the literature [29,36]. This study aims to fill important gaps in the
literature and presents new perspectives and applications by considering the impact of
both climate change and different soil conservation practices. This study contributes to the
comprehensive evaluation of the basins and the creation of indexes that will quantitatively
evaluate the status of the basins [37]. Furthermore, the SWAT model is able to model with
a suitable accuracy watersheds that are missing data or lack measurement data [2,38]. For
this reason, in the North Aegean Basin, where there is insufficient sediment measurement
data, the SWAT model was preferred to identify critical areas where erosion is high, to
examine the effects of climate change on sediment yield, and to evaluate the effects of
different agricultural practices on erosion. This study also guides the preparation of robust
watershed management plans.

2. Materials and Methods

The North Aegean Basin has an important place for Türkiye in agricultural produc-
tion with its fertile lands. Additionally, the basin is home to numerous dams and lakes.
Unfortunately, the use of fertilizers in agricultural activities leads to their transportation
into lakes and reservoirs through surface flow and erosion, causing a significant decline
in water quality. Another crucial factor that affects water quality in the basin is sediment
transport. The transportation of sediment not only diminishes water quality but also
reduces the storage capacity of dams and lakes in the area. Furthermore, climate change
plays a noteworthy role in influencing water resources and, consequently, sediment trans-
port. Therefore, it is imperative to assess the potential of water resources and identify
erosion-prone areas within the basin to ensure the sustainability of agricultural practices,
soil health, and water resources.

2.1. Methodology

The SWAT model, which is capable of simulating the water potential, water quality,
and sediment yield in large and complex basins, was used in this study. In order to analyze
the amount of sediment coming to the dams and lakes in the basin and to examine the
effects of climate change and agricultural practices on erosion, the study was carried out on
a micro-basin scale. After the sub-basins were created, land use and soil characteristics were
introduced to the model and hydrological response units (HRUs) were created. Meteoro-
logical data, irrigated areas, well, and reservoir data were defined in the model. Calibration
and verification processes were performed using the observation data, and thus the setup
of the baseline model was completed (Figure 2). The data used in the model was obtained
from the sources given in Table 1. First, high erosion areas in the baseline model simulation
were determined. The annual average sediment yield for the reservoirs and lakes was
also calculated. Then, by applying two different climate change scenarios, the effects of
climate change on basin erosion in the medium term (until 2030) were examined. Four
different soil-conservation practices were used as BMPs. The aforementioned practices
were applied to the baseline model simulation and climate change model simulations, and
their effects on basin erosion were evaluated. The outcomes of the presented study will
provide valuable insights for addressing erosion issues in the basin and comprehending
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the impacts of climate change and BMPs on erosion. Thus, it contributes to solving vital
problems regarding water and soil pollution, which threaten public and environmental
health and reduce agricultural productivity.

2.2. Study Area

The North Aegean Basin is an open basin located in the northwest of Anatolia and
empties its waters into the sea (Figure 3). The basin has many large and small rivers that
feed water resources. Mediterranean climate is observed in the basin. The North Aegean
Basin, which has fertile lands, has an important place for Türkiye in agricultural production.
Apart from many vegetables and fruits, tropical products with high economic value are
also grown in the basin, and most of these agriproducts are exported to the world [41].
Moreover, various industrial plants can be produced [42]. The basin covers the provinces
of Izmir, Balikesir, Manisa, and Canakkale. Non-point pollutants in the North Aegean
Basin are carried to water resources by the effect of runoff and erosion and increase water
pollution in some parts of the basin [41]. The identification of highly eroded areas of the
North Aegean Basin, which has such a high agricultural value, is important for the basin’s
soil and water resources. In addition, climate change is a factor affecting the watershed
hydrological cycle. For this reason, the effects of climate change and agricultural land
protection practices on watershed erosion were investigated in the present study.
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Table 1. Description of data used in this study.

Data Description Period Source

Digital Elevation
Model (DEM)

Shuttle Radar Topography Mission
(SRTM) Global: Raster resolution of 30 m -

United States Geological Survey’s
(USGS’s) Earth Explorer

(https://earthexplorer.usgs.gov/
(accessed on 20 April 2021)

Land-use data Raster resolution of 100 m 2018

CORINE Land Cover
(https://land.copernicus.eu/pan-

european/corine-land-cover
(accessed on 4 May 2021))

Soil data Raster resolution of 100 m -

FAO–UNESCO global soil map
(https://www.fao.org/soils-portal/data-

hub/soil-maps-and-databases/
faounesco-soil-map-of-the-world/en/

(accessed on 27 May 2021))

Meteorological data Monthly meteorological data 2010–2014

Turkish State Meteorological Service
(https://mgm.gov.tr/kurumsal/

istasyonlarimiz.aspx
(accessed on 5 April 2021))

Climate change projection data 2010–2030

Bogazici University Center for Climate
Change and Policy Studies

(http://climatechange.boun.edu.tr/
(accessed on 5 October 2022 ))

Hydrological data Monthly discharge data of D04A017 and
D04A032 stations 2012–2015 General Directorate of State Hydraulic

Works (DSI)

Well data and the irrigated areas in
the basin -

T.R. Ministry of Agriculture and Forestry,
General Directorate of Water

Management [39]
and

TUBITAK MAM Environment
Institute [40]

Sediment data Sediment data for IST_KEN003,
IST_KEN005 and IST_KEN023 stations 2014 General Directorate of State Hydraulic

Works (DSI)

Water 2023, 15, x FOR PEER REVIEW  5  of  19 
 

 

(http://climatechange.boun.edu.tr/ (accessed on 5 October 

2022 )) 

Hydrological 

data 

Monthly discharge data of D04A017 and 

D04A032 stations 

2012–

2015 
General Directorate of State Hydraulic Works (DSI)   

 
Well data and the irrigated areas in the ba-

sin   
- 

T.R. Ministry of Agriculture and Forestry, General Directorate 

of Water Management [39] 

and 

TUBITAK MAM Environment Institute [40] 

Sediment data 
Sediment data for IST_KEN003, 

IST_KEN005 and IST_KEN023 stations 
2014  General Directorate of State Hydraulic Works (DSI) 

2.2. Study Area 

The North Aegean Basin is an open basin located in the northwest of Anatolia and 

empties its waters into the sea (Figure 3). The basin has many large and small rivers that 

feed water resources. Mediterranean climate is observed in the basin. The North Aegean 

Basin,  which  has  fertile  lands,  has  an  important  place  for  Türkiye  in  agricultural 

production. Apart from many vegetables and fruits, tropical products with high economic 

value are also grown  in  the basin, and most of  these agriproducts are exported  to  the 

world [41]. Moreover, various industrial plants can be produced [42]. The basin covers the 

provinces of Izmir, Balikesir, Manisa, and Canakkale. Non-point pollutants in the North 

Aegean  Basin  are  carried  to water  resources  by  the  effect  of  runoff  and  erosion  and 

increase water pollution in some parts of the basin [41]. The identification of highly eroded 

areas of the North Aegean Basin, which has such a high agricultural value, is important 

for the basin’s soil and water resources. In addition, climate change is a factor affecting 

the watershed  hydrological  cycle.  For  this  reason,  the  effects  of  climate  change  and 

agricultural  land  protection  practices  on watershed  erosion were  investigated  in  the 

present study. 

 

Figure 3. The location of the study area and gauging stations. 

2.3. Climate Change Projections 

RCP4.5 and RCP8.5 projections were applied in the presented study since there is not 

yet a high-resolution dynamically scaled data set for the study region at the regional scale. 

Figure 3. The location of the study area and gauging stations.

https://earthexplorer.usgs.gov/
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://mgm.gov.tr/kurumsal/istasyonlarimiz.aspx
https://mgm.gov.tr/kurumsal/istasyonlarimiz.aspx
http://climatechange.boun.edu.tr/


Water 2023, 15, 2461 6 of 19

2.3. Climate Change Projections

RCP4.5 and RCP8.5 projections were applied in the presented study since there is
not yet a high-resolution dynamically scaled data set for the study region at the regional
scale. Intergovernmental Panel on Climate Change (IPCC)’s (the Sixth Assessment Report
(AR6)) new scenario sets are combined with the Shared Socioeconomic Pathway (SSP) (in
terms of socio-economic) and Representative Concentration Pathway (RCP) (in terms of
radiative forcing) sets. If there were data, they would be a priority to study the SSP2-4.5
and SSP3-7.0 scenarios. However, especially within the scope of the Coordinated Regional
Climate Downscaling Experiment (CORDEX), since regional climate studies are already
continuing within the scope of new scenario sets and there is no publicly accessible data set,
the study continued with RCPs (The Fifth Assessment Report (AR5)), which are still valid
in the literature. RCP4.5 (optimistic) represents a medium-emission scenario, while RCP8.5
(pessimistic) represents a high-emission scenario [43]. Low-resolution MPI-ESM-MR global
climate model outputs were rendered in high resolution (10 km) using the RegCM4.4
regional climate model. Regional climate models (RegCMs) are often used to scale down
climate simulations of a particular area [44,45]. In the present study, precipitation, minimum
temperature, and maximum temperature obtained from dynamically reduced climate data
for the period between 1 January 2010 and 31 December 2014 were compared with in
situ records. Then, it was aimed to reduce the margin of error in the climate data and
to provide realistic data to the hydrological model by using the univariate quantitative
mapping bias correction method. Thus, the possible future hydrological conditions of the
basin were obtained and the change in the basin erosion under these conditions was tried
to be determined.

2.4. Application of Hydrological Model

The SWAT model is a physically based hydrological modeling tool that simulates
soil and water interactions, agricultural applications, and sediment and nutrient dynam-
ics. The SWAT input data can be divided into spatial and temporal data. DEM, soil
structure, and land use are spatial data; meteorological data (such as precipitation (mm),
minimum-maximum temperature (◦C), and wind speed (m/s), solar radiation (MJ/m2))
and hydrological data (surface flow, sediment yield) are temporal data. There are two
types of units in the SWAT model, the sub-basin and the HRU [46]. HRU is created based
on slope, land use, and soil characteristics in the watershed [38]. Sub-basins may have
one or more HRUs. While creating the model, first of all, watershed delineation is made
using DEM, and the main basin and sub-basins are obtained. Then, HRUs are created by
introducing land use and soil properties to the model. The model setup is completed by
entering meteorological data into the model and writing input tables. The SWAT model
considers meteorological data, surface, and lateral flow, infiltration, and evaporation, and
generates a hydrological forecast for each HRU [47]. Evaporation is calculated by using
one of the Priestley Taylor [48], Hargreaves [49], or Penman–Monteith [50] methods in
the model. Moreover, flow is calculated using the SCS curve number [51] or Green and
Ampt [52] methods.

The model shapes the sediment yield of a basin based on the flow characteristics. Sedi-
ment data such as sediment flow and transportation monitoring are needed for sediment
yield estimation. However, in the case of limited sediment measurement data, models
can be used to estimate sediment yield [53]. The SWAT model is successful in simulating
the sediment yield in basins with insufficient data [2]. Moreover, there are methods for
modeling sediment transport in the canal network and erosion in the SWAT model. In the
Universal Soil Loss Equation (USLE) method, soil loss is estimated based on layers and
streams in areas where there is erosion but no accumulation. In the Modified Universal Soil
Loss Equation (MUSLE) method, the sediment yield caused by precipitation and runoff
can be calculated for each HRU [54]. HRU area, surface runoff volume, and peak runoff
rate are used when estimating sediment yield with MUSLE.
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The rainfall energy factor is replaced by a flow factor in MUSLE. The flow factor in
question refers to the energy used during sediment separation and transport, improves the
model’s prediction of sediment yield, and allows the equation to be applied to individual
storm events [53]. MUSLE is [55];

sed = 11.8 ×
(

Qsurf × qpeak × AHRU

)0.56
× KUSLE × CUSLE × PUSLE × LSUSLE × CFRG (1)

where sed is the daily sediment yield in metric tons. CFRG and LSUSLE indicate coarse
fragment factor and USLE topographic factor, respectively. PUSLE represents management
and support practice components while CUSLE represents USLE land cover. CUSLE is the
ratio of erosion from cropped land to the erosion from clean-tilled and continuous fallow
land [56]. PUSLE is the ratio of erosion caused by support applications such as terrace
systems, contour tillage, and strip-cropping on the contour to erosion caused by up-and-
down slope culture. KUSLE is the erosion rate per erosion index unit, it indicates USLE soil
erodibility factor. AHRU is the HRU area, qpeak is the peak runoff rate in m3/s and Qsurf is
the watershed’s surface runoff in mm/ha.

Model calibration can be performed manually or using the SWAT-CUP, an auto-
matic calibration tool. Five different automatic calibration algorithms are available in
SWAT-CUP [57]. Sequential Uncertainty Fitting-2 (SUFI-2) is frequently preferred for the
hydrological calibration of basins [57,58]. In order to analyze the hydrology of the North
Aegean Basin in the short and medium term, the SWAT model was run in the 2010–2030
time period. The first 2 years (2010–2011) were chosen as the warm-up period. While
sediment calibration was performed for 2014, streamflow calibration and verification were
performed using SWAT-CUP for the periods 2012–2013 and 2014–2015, respectively. As a
result of the model, a total of 3965 HRUs and 668 sub-basins were created.

2.5. Calibration and Validation

Before calibrating the hydrological model, first, the calibration parameters are de-
termined. They must be determined according to the hydrological characteristics of the
basin or by sensitivity analysis. After determining the most sensitive parameters for the
basin, calibration is performed. It is important to keep the parameters within a realistic
uncertainty range throughout the calibration [38]. With the calibration process, it is aimed
to reduce the estimation uncertainty in the model. Model simulation results and obser-
vation results are compared. The validation process includes comparing the simulation
results with the observation results by running the model with the calibration parameters.
Therefore, it is necessary to analyze model uncertainty using comprehensive uncertainty
analysis methods [59]. In this study, the SUFI-2 was used to reduce model uncertainty and
provide the best prediction of hydrological processes.

2.6. Agricultural BMPs

BMPs, or best management practices, were developed as measures to combat erosion.
These practices typically involve implementing protective techniques such as cover crops
and terracing as well as making changes in agricultural activities such as crop rotation [60].
By employing these methods, the impact of precipitation on the soil surface is reduced,
resulting in decreased flowrates and increased resistance against erosion. The use of cover
crops shields the soil surface from rain and enhances infiltration. Terracing and tillage
techniques also contribute to minimizing erosion. In the presented study, BMPs were
devised specifically to mitigate erosion in the North Aegean Basin. Initially, sediment
yields were assessed under different scenarios: baseline simulation and climate change
scenarios (RCP4.5 and RCP8.5). Subsequently, various BMPs, including zero tillage, vertical
tillage, cover crop, and terracing applications (Table 2), were implemented to evaluate their
impact on watershed erosion. The agricultural areas in the basin encompass approximately
4183.89 km2, while the North Aegean Basin as a whole covers 9861.2 km2. Given the
diversity of agricultural products cultivated, there are also areas within the basin that consist
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of woodlands and shrubs. As a result, it is not feasible to implement the aforementioned
soil protection practices across all agricultural lands.

Table 2. Description of Agricultural BMPs.

Soil-Conservation Practices Application Area (km2)
Application Area to Total

Watershed Area (%)

Zero tillage 2514.05 25.49

Vertical tillage 2595.08 26.32

Cover crops 2595.08 26.32

Terracing 2594.59 26.31

The SWAT database used the mgt files to implement soil protection measures in
the model. Initially, the sub-basins suitable for applying these measures were identified.
Subsequently, based on the agricultural lands and slope characteristics within the chosen
sub-catchments, appropriate HRUs were selected where the relevant protective practices
could be implemented. In summary, soil protection practices were not universally imple-
mented across all selected sub-catchments but rather in specific areas deemed suitable
within those sub-catchments. Consequently, the resulting sediment yield from the simu-
lations only reflects the changes attributable to the sub-basin areas where soil protection
measures were applied. As a result, the agricultural lands that could be utilized for each
practice were investigated and evaluated separately. In this context agricultural areas where
protective tillage methods can be applied were investigated; zero tillage was applied in
2514.06 km2 areas, vertical tillage in 2595.09 km2 areas, cover crops in 2595.09 km2 areas,
and terracing in 2594.59 km2 areas. To incorporate best management practices (BMPs) into
the model, certain adjustments have been applied to the management (.mgt) file within the
SWAT database. The objective is to utilize tillage and cover crop applications for filtering
runoff and controlling sediment in the fields. These applications are represented in the
SWAT model by the tillage implement code (TILLAGE_ID) and the biomass (dry weight)
target (BIO_TARG) parameters. Additionally, terracing is employed on sloping areas to
manage the flow, which is indicated in the model by the USLE_P parameter. For instance,
when implementing the tillage application, the management operation number (MGT_OP)
parameter is set to 6. Subsequently, the TILLAGE_ID parameter is assigned as 4 for zero
tillage and 3 for vertical tillage. Regarding the cover crop application, modifications are
made to the BIO_TARG parameter. Similarly, adjustments are made to the USLE_P param-
eter for the terracing application. As a result, the BMPs are implemented by modifying
these specific parameters.

3. Results and Discussion

Identifying the erosion-sensitive areas of the basin is critical for the protection of
water resources and the development of sustainable watershed management practices.
In a previous model study conducted on the North Aegean Basin [3], the focus was
solely on evaluating water quality and associated best management practices, without
examining sediment yield. However, this study takes a different approach by addressing
both climate change and erosion issues in the basin while also exploring effective soil
conservation practices. Moreover, the calibration and validation stations used in this study
differ, and sediment calibration was conducted at three distinct stations to enhance the
model’s accuracy. Consequently, this study distinguishes itself from previous research by
incorporating these unique elements.

3.1. Model Performance Evaluation

Sensitivity analysis, calibration, and verification processes were performed for both
flow and sediment using SWAT-CUP software and the SUFI-2 algorithm. After the com-
pletion of the calibration processes, the flow verification process was also carried out. The
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flow calibration was carried out at D04A032 and D04A017 stations for the 2012–2013 time
period. Model verification was performed at the same stations for the 2014–2015 time pe-
riod. Sediment calibration was performed at IST_KEN003, IST_KEN005, and IST_KEN023
stations using total suspended solids (TSS) loads. Measurement data from 2014 were used
in sediment calibration. The mentioned data consist of instantaneous measurements taken
during the months of May, July, November, and December. The calibration parameters
were fixed after the successful completion of the flow and sediment calibration processes.

To assess the model’s performance after calibration and verification, statistical metrics
such as R2, PBIAS, and NS were used. A thorough review of relevant literature sources [61–65]
was conducted, and a total of 15 flow calibration parameters and 5 sediment calibration
parameters were selected for the basin [3]. The most sensitive parameters in the model
for hydrological calibration are curve number (CN2), average slope steepness (HRU_SLP),
baseflow alpha factor (ALPHA_BF), and saturated hydraulic conductivity (SOL_K). As a
result of the calibration, the D04A032 station yielded NS, R2, and PBIAS values of 0.54, 0.63,
and −22.9, respectively. On the other hand, the D04A017 station exhibited NS, R2, and
PBIAS values of 0.72, 0.76, and 1.4, respectively. During model validation, the NS, R2, and
PBIAS values for the D04A032 station were 0.61, 0.70, and −17.5, while for the D04A017
station, these values were 0.75, 0.78, and 3.8, respectively.

Regarding sediment calibration, the most sensitive parameters in the model were
identified as the USLE soil erodibility factor (USLE_K), the USLE support practice factor
(USLE_P), and the exponent parameter for sediment re-entrainment (SPEXP). Following the
sediment calibration process, the IST_KEN003 station yielded NS, R2, and PBIAS values of
0.79, 0.94, and −30.64, respectively. The IST_KEN005 station exhibited NS, R2, and PBIAS
values of 0.80, 0.96, and −46.96, respectively, while the IST_KEN023 station had values of
0.70, 0.90, and 44.89, respectively (Table 3). To evaluate the model’s performance, certain
criteria were considered: NS ≥ 0.5, PBIAS within ±25%, and R2 ≥ 0.5 for flow calibration
and NS ≥ 0.5, PBIAS within ±55%, and R2 ≥ 0.5 for sediment calibration [66]. Based on
these criteria, the calibration and verification results for both streamflow and sediment
demonstrated that the model’s performance is satisfactory (Figures 4 and 5).
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Table 3. Statistical summary for streamflow and total suspended solid loads.

Analysis Station R2 NS PBIAS

Streamflow calibration D04A017 0.76 0.72 1.40

D04A032 0.63 0.54 −22.91

TSS load calibration IST_KEN003 0.94 0.79 −30.64

IST_KEN005 0.96 0.80 −46.96

IST_KEN023 0.90 0.70 44.89

Streamflow verification D04A017 0.78 0.75 3.80

D04A032 0.70 0.61 −17.52

3.2. Basin Hydrology and Sediment Yield

The sediment yields of the North Aegean Basin were obtained for the years 2012–2030
by using the baseline model. The mean annual sediment loads in the sub-basins during
the simulation period ranged from 0 to 1325.43 kg/ha. It is seen that the sediment yield is
generally lower in the coastal areas, and the sediment loads from the coastline to the inner
parts of the basin also increase (Figure 6).
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There are many factors affecting the erosion in the basin. The distribution of eroded
areas in the basin is directly related to the basin slope, geology, soil structure, land use,
precipitation, and climate change factors. Hence, these factors significantly affect the flow
characteristics and erosion of the basin [5,11]. The low erosion is usually due to the tight
soil structure and the presence of hard rock in the region while the high level of erosion
depends on the effectiveness of surface flows [2]. Therefore, soil erosion and sediment
yield generally tend to increase in sub-basins close to the river network [67]. Agricultural
lands are dense in the North Aegean Basin and the basin has many tributaries of various
sizes. Thus, sediment loads can be easily carried by the surface flow and are affected by
agricultural activities.
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3.3. Impacts of Climate Scenarios on Basin Hydrology and Sediment Yield

RCP4.5 and RCP8.5 scenario simulations show that precipitation, evapotranspiration,
and runoff tend to decrease compared to the baseline model simulation. During the
2012–2030 time period, precipitation decreased by 14.86% in the RCP4.5 scenario, while it
decreased by 11.02% in the RCP8.5 scenario. The amount of evapotranspiration decreased
by 10.21% and 8.13% for the RCP4.5 and RCP8.5 scenarios, respectively. Additionally, while
the amount of runoff decreased by 38.53% in the RCP4.5 scenario, it decreased by 31.84% in
the RCP8.5 scenario. Decreased surface runoff also reduces sediment-carrying capacity [2].
This is an expected result that flow volume has a direct effect on sediment transport [68]. As
a result of RCP4.5 and RCP8.5 simulations, with the decrease in surface flows, changes in
sediment transport occurred in accordance with hydrological transport processes (Figure 7).
During the 2012–2030 time period, sediment yield in the basin for the RCP4.5 and RCP8.5
climate change scenarios decreased by 55.73% and 50.71%, respectively.
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3.4. Evaluation of BMPs

In order to reduce sediment loss in the North Aegean Basin and thus protect water
resources, various soil-conservation practices were used in the present study. Developed
management applications include zero tillage, vertical tillage, cover crop, and terracing
methods. Soil-conservation practices were first applied to the baseline model simulation.

In the baseline model simulation, zero tillage application decreased the basin erosion
by 0.71%, while the application of vertical tillage decreased it by 0.32%, cover crop use
decreased it by 0.78%, and terracing application decreased it by 4.22% during the model
study period. Thus, it has been seen that the use of cover crops and terracing are more
effective for the basin in reducing erosion (Table 4). Then, these watershed management
applications were tested under the climate change simulations of RCP4.5 and RCP8.5.
Under the RCP4.5 scenario, the zero tillage application reduced the basin erosion by 1.16%,
while the application of vertical tillage decreased it by 0.43%, cover crop use decreased it
by 2.18%, and terracing application decreased it by 4.01%. Under the RCP8.5 scenario, the
zero tillage application reduced the basin erosion by 1.12%, the vertical tillage decreased it
by 0.40%, the cover crop use decreased it by 2.15% and the terracing application decreased
it by 3.96%. As a result, it was seen that cover crop and terracing practices for both climate
change simulations were more effective in reducing erosion than zero tillage and vertical
tillage. Although some BMPs seem to be less effective on erosion corresponding to climate
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change impacts, increasing BMP application rates in the future has distinctive contributions
to balancing erosion in the basins [69].

Table 4. Sediment yield reduction rates for BMPs in the North Aegean Basin in the 2012–2030 time
period (for Baseline Model simulation, RCP4.5 simulation, and RCP8.5 simulation).

Soil-Conservation
Practices Baseline Model (%) RCP4.5 (%) RCP8.5 (%)

Zero tillage −0.71 −1.16 −1.12
Vertical tillage −0.32 −0.43 −0.40

Cover crop −0.78 −2.18 −2.15
Terracing −4.22 −4.01 −3.96

The use of cover crops and terracing practices, which have a greater effect on reducing
erosion, were examined on a sub-basin basis. In the baseline model simulation, it was
identified that the erosion reductions on the sub-basin basis for cover crop and terracing
practices ranged from 0 to 21.14 kg/ha/yr and 0 to 8.17 kg/ha/yr, respectively (Figure 8).
The areas with the least erosion are generally located in the western parts of the basin.
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Figure 8. Mean annual sediment yield (2012–2030) for cover crop (a) and terracing (b) practices
applied to baseline model simulation.

In the RCP4.5 climate change model simulation, the erosion reductions on the sub-
basin basis cover crop and terracing practices ranged from 0 to 21.43 kg/ha/yr and 0 to
10.87 kg/ha/yr, respectively (Figure 9).

Finally, in the RCP8.5 climate change model simulation, the use of cover crops and
terracing applications was evaluated on a sub-basin basis. It was determined that the
erosion reductions on the sub-basin basis for cover crop and terracing practices ranged
from 0 to 27.35 kg/ha/yr and 0 to 12.17 kg/ha/yr, respectively (Figure 10). The erosion
reduction rates were obtained by considering the difference between the erosion after the
implementation of the practices and the erosion in the baseline model simulation.
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Sediment yields for water bodies such as reservoirs and lakes in the North Aegean
Basin were also investigated in the basin. This analysis included a natural lake, 2 ponds,
and 11 reservoirs which are used for various purposes such as drinking and utility water
and industrial and irrigation water supplies [70]. Accordingly, the annual average sediment
yields and reduction rates of soil-conservation practices were calculated for the baseline
model simulation and climate change simulations. The selected water bodies and the
sediment yield reduction rates of the soil-conservation practices are given in Table 5 for
different simulations. It is inferred that cover crop and terracing practices reduce the
average annual sediment yields to water resources between ‰0.06 and ‰7.23. As a result,
the dam where the sediment yield decreased the most is Sevisler Dam with ‰7.23 (baseline
model simulation with cover crop application), while the pond where the sediment yield
decreased the most was Madra Dam with ‰5.62 (baseline model simulation with cover
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crop application). Moreover, Yukarikiriklar Pond with ‰5.47, Caltikoru Dam Lake with
‰3.51, Guzelhisar Dam with ‰1.54 and Kemerdere Pond with ‰1.28 are among the other
water sources where the sediment yield has decreased.

Table 5. Sediment yield reduction rates (‰) for different simulations.

Water Body Subbasin
No

Baseline
Model

Simulation
with S3

Baseline
Model

Simulation
with S4

RCP4.5
Simulation

with S3

RCP4.5
Simulation

with S4

RCP8.5
Simulation

with S3

RCP8.5
Simulation

with S4

Boz Lake 92 . . . −0.158 . . . −0.126 . . . −0.065

Yukarikiriklar
Pond 147 −5.471 −0.363 −0.315 −0.643 −0.109 −0.714

Kemerdere
Pond 262 . . . −0.122 . . . −1.280 . . . −0.918

Kestel Dam 270 . . . −0.514 . . . −0.213 . . . . . .

Guzelhisar
Dam 367 −1.540 −0.406 −0.845 −0.703 −0.060 −0.321

Bayramic
Dam 465 . . . −0.319 . . . −0.601 . . . −0.308

Saribeyler
Dam 526 . . . −0.357 . . . −0.512 . . . −0.851

Kul Dam 546 . . . −0.541 . . . −0.461 . . . −0.732

Havran Dam 568 . . . −0.258 . . . −0.234 . . . −0.815

Ayvacik Dam
Lake 617 . . . −0.339 . . . −1.023 . . . −0.864

Yortanli Dam
Lake 634 −0.758 −0.158 −0.296 −0.321 −0.837 −0.845

Madra Dam 643 −5.62 −0.236 −1.677 −0.614 −1.769 −0.741

Caltikoru
Dam Lake 649 −3.51 −0.472 −2.619 −0.788 −3.057 −0.715

Sevisler Dam 657 −7.23 −0.412 −0.981 −0.956 −0.445 −0.868

4. Conclusions

In the presented study, the hydrological process and sediment yield of the North
Aegean Basin were comprehensively investigated. The effects of climate change and
agricultural practices on erosion were evaluated. As a result of the RCP4.5 and RCP8.5
scenarios, the flow amount in the basin decreased by 38.5% and 31.8%, respectively, and
in parallel, the amount of sediment decreased by 55.7% and 50.7%. After determining
the effects of climate change on erosion, various management application practices were
developed which contain zero tillage, vertical tillage, cover crop use, and terracing. While
all practices were effective in reducing basin erosion, particularly the use of cover crops
(0.78% to 2.18%) and terracing (3.96% to 4.22%) showed the most effective reduction.

The present study demonstrated a useful modeling approach by testing management
practices to reduce erosion. The study, which was prepared using a very large data set,
evaluated the erosion status of the North Aegean Basin in the near future (until 2030), and
also created erosion maps. The annual average sediment yields to major water resources
of critical importance for the basin were also investigated. The effect of soil conservation
practices on reducing sediment yield was investigated under baseline model simulation
and climate change scenarios. It was determined that the annual average sediment yield to
the selected water bodies decreased with the help of cover crops and terracing. It was also
obtained that the highest decrease in the annual average sediment yield is for Sevisler Dam
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(7.23‰), Yukarikiriklar Pond (5.47‰), Madra Dam (5.62‰), Caltikoru Dam Lake (3.51‰),
Guzelhisar Dam (1.54‰), and Kemerdere Pond (1.28‰). On the other hand, since there are
many large and small water resources in the North Aegean Basin, it is highly recommended
that the placement of sediment measurement stations will provide high-performance basin
erosion models in future works.

The development of best management practices is a very important issue for envi-
ronmental governance. The results obtained will be a guide for decision-makers in the
development of soil protection and management plans, the use of alternative agricultural
practices, and the development of sustainable watershed management practices. Addi-
tionally, this study showed the usefulness of the SWAT in assessing the effects of climate
change and soil conservation practices on watershed erosion. According to the results
of the study, cover crop use and terracing applications are recommended for the North
Aegean Basin since they perform more effectively than other protective soil applications in
reducing basin erosion.
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