
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.DOI

Real-Time Multi-Task ADAS
Implementation on Reconfigurable
Heterogeneous MPSoC Architecture
GUNER TATAR1,2 (Student Member, IEEE), SALIH BAYAR2
1Department of Electrical Electronic Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, TURKIYE (e-mail: gtatar@fsm.edu.tr)
2Department of Electrical and Electronic Engineering, Marmara University, Istanbul, TURKIYE (e-mail: salih.bayar@marmara.edu.tr)

Corresponding author: Guner TATAR (e-mail: gtatar@ fsm.edu.tr).

ABSTRACT The rapid adoption of Advanced Driver Assistance Systems (ADAS) in modern vehicles,
aiming to elevate driving safety and experience, necessitates the real-time processing of high-definition
video data. This requirement brings about considerable computational complexity and memory demands,
highlighting a critical research void for a design integrating high FPS throughput with optimal Mean
Average Precision (mAP) and Mean Intersection over Union (mIoU). Performance improvement at lower
costs, multi-tasking ability on a single hardware platform, and flawless incorporation into memory-
constrained devices are also essential for boosting ADAS performance. Addressing these challenges,
this study proposes an ADAS multi-task learning hardware-software co-design approach underpinned
by the Kria KV260 Multi-Processor System-on-Chip Field Programmable Gate Array (MPSoC-FPGA)
platform. The approach facilitates efficient real-time execution of deep learning algorithms specific to ADAS
applications. Utilizing the BDD100K, KITTI, and CityScapes datasets, our ADAS multi-task learning
system endeavours to provide accurate and efficient multi-object detection, segmentation, and lane and
drivable area detection in road images. The system deploys a segmentation-based object detection strategy,
using a ResNet-18 backbone encoder and a Single Shot Detector architecture, coupled with quantization-
aware training to augment inference performance without compromising accuracy. The ADAS multi-task
learning offers customization options for various ADAS applications and can be further optimized for
increased precision and reduced memory usage. Experimental results showcase the system’s capability to
perform real-time multi-class object detection, segmentation, line detection, and drivable area detection on
road images at approximately 25.4 FPS using a 1920x1080p Full HD camera. Impressively, the quantized
model has demonstrated a 51% mAP for object detection, 56.62% mIoU for image segmentation, 43.86%
mIoU for line detection, and 81.56% IoU for drivable area identification, reinforcing its high efficacy
and precision. The findings underscore that the proposed ADAS multi-task learning system is a practical,
reliable, and effective solution for real-world applications.

INDEX TERMS ADAS, Deep learning, Deep processing unit, Memory allocation, Multi-task learning,
MPSoC-FPGA architecture, Vitis-AI, Quantization aware training

I. INTRODUCTION

The rise of deep learning (DL) and vision-based tech-
nology has ushered in a new era of discussion sur-

rounding autonomous driving. An autonomous driving sys-
tem is a complex construct comprising numerous sensors
and modules performing specific functions. The capacity
to perceive and react to various environmental constituents,
such as surrounding vehicles, pedestrians, and traffic signs,
is fundamental to a robust autonomous driving system. The
advent of DL has catalyzed remarkable advancements over

conventional algorithms in these processes. DL methods can
be applied to diverse machine vision tasks, yielding accuracy,
speed, and reliability enhancements.
Although DL finds applicability across multiple domains,
including healthcare, finance, and entertainment, its promi-
nence is particularly evident in Advanced Driver Assistance
Systems (ADAS) tasks. For instance, architectures such as
VGG-Net [1], GoogleNet [2], DenseNet and ResNet [3] have
been proposed for image classification and have success-
fully executed all tasks. In object recognition, multi-stage

VOLUME 4, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

detectors, such as R-CNN [4] and Faster R-CNN [4], and
single-stage object detection approaches, such as SSD [5] and
YOLO [6], have been effectively deployed in contemporary
applications. Similarly, models such as DeconvNet [7] and
SegNet [8] are recognized for their proficiency in semantic
segmentation, while LaneNet [9] and VPGNet [10] have
demonstrated success in lane detection tasks.
A thorough analysis of each model reveals that their com-
plexities can be attributed to the multitude of layers and
parameters involved. This intricacy originates from the am-
bition of designers to augment the performance of Deep
Neural Networks (DNNs) by fabricating more extensive ar-
chitectures. Indeed, such complexity presents difficulties in
training, extracting, and implementing deepening architec-
tures, which grow concurrently with escalating requirements.
Moreover, employing each specified DL model for a unique
task renders their concurrent utilization in multi-tasking ap-
plications more feasible.
Two distinct strategies emerge as potential solutions to cir-
cumvent this issue. The initial strategy involves the operation
of each task-specific model on distinct hardware platforms, a
method unavoidably associated with financial implications.
In contrast, the second strategy pertains to cultivating and
expanding multi-tasking learning models. As the terminol-
ogy suggests, multi-tasking learning operates on the premise
that numerous tasks, interconnected and running on single
hardware using the same infrastructure, will result in in-
creased efficiency. Though this method may slightly heighten
the model’s complexity for the designer, it simultaneously
obviates the financial burden of running distinct learning
models on the same platform. The execution of multi-task
learning on constrained hardware through multi-tasking is
rapidly emerging as a promising and efficacious strategy
within ADAS.
This new sub-field within artificial intelligence is character-
ized by the simultaneous operation of multiple learning tasks
using a single model, capitalizing on the disparities and sim-
ilarities across tasks. This novel paradigm has the potential
to proffer significant benefits across a plethora of domains.
Sharing backbone encoder computations can considerably
reduce overall computational complexity. Furthermore, due
to the inherent and reciprocal relationships among various
tasks, multi-task learning has the potential to confer superior
learning efficiency and predictive accuracy.
Optimization of both software and hardware architectures
is an essential step in augmenting processing speed and
minimizing inference time. Thus, hardware-software co-
design emerges as a vital consideration for ADAS opti-
mization within a Multiprocessor System-on-Chip Field Pro-
grammable Gate Array (MPSoC-FPGA) context, spanning
both software and hardware dimensions. This approach fa-
cilitates the maximum utilization of embedded resources,
thereby achieving a high degree of energy efficiency.
Given the complexities discussed, an innovative architecture
is proposed herein, specifically tailored to navigate finan-
cial constraints and meet the need for executing multiple

tasks simultaneously on a designated hardware platform.
The novelty of the present study primarily lies in the im-
provements instituted within the hardware accelerator plat-
form, synchronously with software enhancements. In forth-
coming chapters, thorough elucidation of the unique soft-
ware enhancements, the collaborative methodology involving
hardware-software co-design, and the specialized memory
allocation and pipeline structures implemented on the hard-
ware accelerator side will be provided. This comprehensive
examination aims to furnish a more in-depth understanding
of the various components and the innovative approaches
employed in the proposed architecture.

A. MOTIVATION AND BACKGROUND
DL has a wide range of uses in ADAS to increase au-
tonomous driving capability and prevent possible loss of life
and property. DL was considered for ADAS applications due
to its proficiency in computer vision tasks, which are deemed
essential for the functionalities of ADAS. DL models, such
as CNNs and DNNs, are highly effective in processing and
extracting information from image and video data obtained
from sensors. They can automatically learn meaningful fea-
tures, eliminating the need for manual feature engineering.
DL also excels at complex pattern recognition and enables
end-to-end learning, simplifying system architecture. Addi-
tionally, DL models are scalable, adaptable, and can general-
ize well to different driving scenarios. While other learning
algorithms are used in certain components of ADAS, DL’s
strengths in computer vision make it highly applicable in
ADAS applications. Thus, we concentrated on developing
and accelerating DL-based ADAS algorithms.
Hardware selection should be made with ADAS tasks for the
specified DL models to be run at the desired performance and
without resource consumption problems by making software
optimizations on hardware accelerator platforms. Custom
circuit blocks and chip architectures are accelerated to create
hardware accelerators.
Similarly, operational cores are employed to strike a balance
between performance and functional flexibility. Speed, image
size, power consumption, flexibility, accuracy, and memory
are all constraints in embedded systems and applications. Un-
derstanding the benefits of these high-tech products requires
a thorough understanding of DL models and hardware accel-
eration structures. Since DL algorithms are based on neural
networks, understanding their fundamental architecture and
configuration is critical.
Today, most DL applications are cloud-based in open-source,
public clouds with companies like Google, Microsoft, and
Amazon [14]. DL networks of these companies analyze large
amounts of data and carry out tasks by the CPUs of these
companies filled with thousands of servers. These CPU-
based structures are sometimes insufficient for analyzing
such large amounts of data. In such cases, CPUs are coupled
with other hardware, such as FPGA, GPU or ASIC-based
accelerators, for utilizing the DL networks. For example,
while many companies use computers equipped with multi-

2 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

core GPUs, Google uses its Tensor processor unit, and Mi-
crosoft uses an FPGA system [14], [15]. What is striking
in the literature studies and research, due to their inherent
parallelism capability of [16] application-specific platforms
FPGAs and ASICs’ have recently gained popularity. Inherent
parallelism is beneficial for DL model training because of
reducing the execution time and accuracy of programs. In
this way, the designer can focus on the work of the DL
model by eliminating the parallelization workload. To run
the DL model on MPSoC architectures (ARM and FPGA to-
gether), designers require good hardware-software co-design.
Because the parts with the highest computational density are
executed on the Deep Processing Unit (DPU) side, while the
rest are executed on the ARM processor side.
The selection of the KRIA KV260 MPSoC FPGA for the
implementation of this work was aligned with the require-
ments, primarily due to its compatibility with the ADAS
application under study. The KRIA KV260 MPSoC FPGA
aptly balances computational power, flexibility, and power
efficiency, presenting specific features such as high-speed
interfaces and dedicated hardware accelerators that closely
align with our ADAS application’s needs. Furthermore, the
KRIA KV260 MPSoC FPGA boasts significant support and a
mature ecosystem for deep learning development, facilitating
more straightforward implementation and optimization of
our deep learning algorithms. Similarly, the KRIA KV260
MPSoC FPGA is frequently utilized for applications includ-
ing ADAS, robotics, and industrial automation, requiring a
balance between processing power and FPGA flexibility.

B. RELATED WORK
This section briefly presents some of the most advanced
previous work on multi-object detection, semantic segmen-
tation, and multi-tasking ADAS systems. There are many
studies in the literature related to ADAS. However, it is
only possible to compare some studies precisely with each
other. For this reason, we have taken similar parts of the
studies conducted in the last years closest to the study
we propose. We have determined the most common work
points in terms of tasks, data-sets, software-hardware co-
design, the hardware used, FPS values, and the accuracy of
inference. Initially, we provided concise summaries of the
critical aspects of state-of-the-art studies, structuring them
semantically from single-task studies to multi-task studies.
Subsequently, we compiled encapsulating table studies that
briefly explained studies alongside other distinct studies. The
inclusion of this Table 1 is pivotal, as it presents the reader
with detailed insights and critical points pertinent to our
subject matter in a comprehensive and accessible format.
What can be clearly seen in the latest state-of-the-art studies
in Table 1 is the high rate of using GPU-based hardware
architecture. One of the primary reasons for this is that a GPU
with hundreds of cores capable of processing thousands of
threads in parallel can accelerate the performance of some
software by about 100 times when compared to other ar-
chitectures. Likewise, the complex computational problems

we expect computers to solve have increasingly parallel
structures. For example, consider the massive amounts of
video processing, image analysis, signal processing, and DL
streams that must happen reliably and in real-time to run a
self-driving vehicle. Furthermore, a GPU must achieve this
processing speed in power-constrained systems like battery-
powered electric vehicles while providing greater power and
cost efficiency. Another essential feature is that GPU-based
architectures are easy to program with advanced software
packages, including CUDA, TensorFlow and PyTorch.
Indeed, while GPUs provide both good hardware acceler-
ation capabilities and excellent usability, high energy con-
sumption and high cost are constraints for battery-powered
devices. Therefore, designers prefer architectures with simi-
lar GPU features as well as less energy-consuming and cost-
effective architectures. Recently, application-specific plat-
forms (e.g. FPGAs, ASICs) are becoming more popular due
to their inherent parallelism capability, which is advanta-
geous for DL algorithm training in program execution time
and accuracy [16]–[20].
FPGAs are highly desirable due to their low energy con-
sumption, inherent parallel processing capabilities, and fast
results even at low frequencies [19], [20]. This means they
will have a low-cost, high-performance hardware accelerator
that designers prefer. While low-level hardware description
languages (e.g., VHDL, Verilog) were formerly the only way
to program an FPGA, the introduction of unified software
platforms such as Xilinx-Vitis and Vitis-AI [21] have made
coding in C/C++ and Python possible. In addition, the inte-
gration of high-level frameworks TensorFlow and Caffe with
high-level languages such as C/C++ and Python, thanks to
AMD-Xilinx Vitis, has increased the use of FPGAs in DL
applications.
Based on given information, we highlighted the strengths and
weaknesses of the studies that showed the closest similarity
to our research from the references given in Table 1.
For example, in their insightful work, Ghorbel et al., [27],
proposed a method that utilizes GPU acceleration to par-
allelize the eyes detection algorithm based on Viola and
Jones, a development aimed at designing an innovative smart
wheelchair. The authors subsequently apply this research
to craft a human-machine interface to govern intelligent
wheelchair control. Notably, their work incorporates a sig-
nificant element of software-hardware co-design. However,
their study appears to lack comprehensive coverage of multi-
task learning, which warrants further exploration to augment
the design and performance of intelligent wheelchairs. In the
concluding remarks of their study, Ghorbel et al. explicitly
acknowledge the persistent challenge posed by GPUs in the
context of energy consumption and efficiency. This issue is
particularly pronounced in electronic systems powered by
batteries, potentially limiting the viability and practical ap-
plicability of their research in real-world settings. Moreover,
the study employs the Omap4 4460 platform, which may
be prohibitive considering the price-performance ratio. It is
crucial to examine whether more cost-effective alternatives

VOLUME 4, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. ADAS multi-tasks implementation in the literature

Ref. Drivable area
& Line detection

Semantic
segmentation

Multi object
det. Data-sets HW-SW

co-design Platform FPS Evaluation
(%)

[27] Y N N FDDB Y C-based GPU
Omap4460 55ms 87.33 (Accu.)

[22] Y N N COCO N NVIDIA Jetson
Nano 20 60 (Accu.)

[24] Y Y N Cityscapes
KITTI N NVIDIA RTX

TITAN N 72.32 (mIoU)

[25] Y Y N
tuSimple

Cityscapes
BDD100K

N NVIDIA RTX
2080Ti GPU N

95.73 (Accu.)
70.9 (F1)

57.03 (Accu.)

[26] Y Y N Their N GTX 1080Ti
Xavier NX

50
15 94.51 (F1)

[23] Y Y N Cityscapes N NVIDIA RTX
2080Ti & ROS N N

[33] Y Y N KITTI N NVIDIA
TITAN GPU N 94.21 (AP)

[28] N N Y VOT
VBT Y

Zynq
UltraScale+

MPSoC
ZCU3EG

123
53.3 66.25 (mIoU)

[29] N N Y Their N NVIDIA
GTX 1060 16.68 0.986 (mAP)

[30] N N Y GTSRB N
NVIDIA Jetson

Xavier AGX
& Xavier Nx

43.59
23.17 0.621 (mAP)

[32] N N Y
CVC-09

FLIR ADAS
OSU, KAIST

N NVIDIA
Jetson Nano 3 84.1 (mAP)

[34] Y N Y Air learning
database Y Xavier NX

Jetson TX2 6 91 (Accu.)

[31] N Y N Cityscapes N GTX TITAN X
Maxwell (GPU) 30 70 (mIoU)

[35] Y Y Y N N
NVIDIA Jetson

Xavier &
TI TDA2x

10
15 39.78 (mAP)

ADAS Multi
task- learning

(Proposed
study)

Y Y Y
BDD100K
Cityscapes

KITTI
Y KRIA KV260

MPSoC FPGA 25.4

Object det.: 51 (mAP)
Segment.: 56.62 (mIoU)
Drivable: 81.56 (mIoU)
Line det.: 43.86 (IoU)

∗ Y/N: Yes/No, IoU: Intersection over Union, mIoU: mean Intersection over Union, mAP: mean Average Precision, FPS: Frame per Second, Accu: Accuracy

could achieve comparable, if not superior, results in de-
signing intelligent wheelchairs and their respective human-
machine interfaces. This would improve the accessibility and
affordability of the technology for a broader user base.
In their study, the authors [28] undertook a comparative
analysis of three disparate deep convolutional neural net-
work hardware accelerator implementation methods. These
encompassed coarse-grained, fine-grained, and sequential
Vitis-AI strategies. Two bespoke DNN architectures were
developed within the System Verilog and FINN frameworks,
displaying the flexibility and applicability of these models.
Notably, despite achieving high performance in terms of FPS
rate, the authors did not explore multi-task implementation
in their work, which leaves room for further investigation
into improving computational efficiency. Another critical
observation to be made about the study is their choice of
the high-performance MPSoC ZCU3EG for the exclusive
task of object detection. Given the processing capabilities
of this particular system, it could potentially be better lever-
aged by distributing the computational load across multiple

tasks, thereby optimizing resource use. This single-task fo-
cus leaves the potential for more comprehensive, multi-task
approaches largely unexplored. Such methodologies could
prove beneficial for enhancing processing efficiency and
performance in future research endeavours.
An additional noteworthy study is the one conducted by Cho
et al., [33], titled "Multi-task Self-supervised Visual Rep-
resentation Learning for Monocular Road Segmentation,"
which attained a commendable 94.23% Average Precision
(AP) performance. Within their research, the authors em-
ployed a multi-task framework for segmentation-based road-
way identification. Their study utilized the KITTI dataset
and relied on the considerably costly NVIDIA TITAN GPU
as their hardware. In a distinctive shift from traditional
literature, the authors examined the utility of unsupervised
stereo-based indicators to acquire high-level semantic knowl-
edge for monocular route detection. Their experimental out-
comes indicated an above-average performance, albeit not
significantly superior compared to our research. Our study
boasts several advantages over Cho et al.’s research, such

4 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

as a broader array of utilized datasets (KITTI, BDD100K,
and CityScapes), the adopted methodology, the concurrent
execution of four distinct tasks, and the incorporation of a
backbone encoder.
In the seminal work by Krishnan et al., [34], an in-depth
exploration was conducted on the automation of domain-
specific SoC design intended for autonomous vehicles, with
particular emphasis on Unmanned Aerial Vehicles (UAVs).
The scope of their research primarily encompassed nano,
micro, and mini-UAVs, for which they utilized the capa-
bilities of Xavier NX and Jetson TX2 to fashion domain-
specific SoCs accelerators. Their research findings confirmed
an acceleration factor of approximately 2.25x, 1.62x, and
1.43x, respectively, across the range of UAVs studied. It is
crucial to note that the approach employed by the authors,
though commendable in its results, diverges from ours in a
significant aspect, namely the software-hardware co-design,
which is the cardinal characteristic differentiating our study.
In addition to this distinguishing factor, our research incorpo-
rates semantic segmentation, which remarkably enhances the
FPS value. This constitutes a considerable advantage when
the two studies are juxtaposed. Furthermore, the original
study conducted by Krishnan et al. exhibits a preference for
GPU-based accelerator platforms. Despite their numerous
benefits, it is widely recognized that such platforms are
mainly inefficient in energy consumption, owing to their
reliance on hundreds or even thousands of CUDA cores.
This aspect further underscores our research’s distinctiveness
and potential advantages, which circumvents this significant
energy inefficiency challenge.
In their substantive research, Lai et al. [35] introduced a
Multi-Task Semantic Attention Network (MTSAN) designed
to amalgamate segmentation and object detection function-
alities for real-time applications in ADAS. Although their
approach substantially reduced false alarm frequency, it did
so at the cost of increased computational resources. The
researchers reported an FPS rate of 10 at a resolution of 512
x 256 on NVIDIA’s Jetson Xavier and a slightly improved 15
FPS at the exact resolution on Texas Instruments’ TDA2x
platform. However, given the considerable investment as-
sociated with NVIDIA’s Jetson platforms, these FPS rates
could be more impressive when juxtaposed with our model’s
superior performance.
Moreover, the authors characterized their hardware as low-
power, a claim inconsistent with the commonly recognized
high energy consumption intrinsic to GPU-based architec-
tures. Their study further reveals a subtle under emphasis on
the multi-task functionality of their model, creating an oppor-
tunity for a more thorough model evaluation and comparison.
Contrasting the performance metrics of our model with those
of the authors provides a clearer picture of our superiority.
Enhancements on numerous fronts, including FPS, power
consumption, and memory resource utilization, are observed
in the presented model. It showcases superior real-time per-
formance, exhibiting an improved FPS rate compared to
[34], [35]. Furthermore, our model’s mAP and mIoU results

exceed those of the MTSAN model, which underscores our
superior performance in object detection and segmentation
tasks.
Regarding power consumption, our model operates on an
MPSoC architecture, renowned for delivering robust com-
putational performance while consuming significantly less
power than GPU-based architectures. This issue summarises
our model being more energy-efficient while providing full
ADAS functionalities. Regarding memory resources, we
leverage the Xilinx Kria KV260 platform, renowned for
optimal memory resource utilization, which results in a more
memory-efficient solution.
In summary, our model presents a more balanced solution for
ADAS applications by providing robust performance coupled
with energy efficiency and cost-effectiveness. This situation
culminates in our model outperforming those proposed by
[34], [35] across multiple evaluation parameters, asserting its
superiority in this field.
As Table 1 shows, there are many methods and studies for
ADAS development. Here, we have tried to present famous
state-of-the-art outcomes closest to our work. In addition,
studies involving software optimization and the use of
hardware accelerators in designing ADAS applications have
become popular. Hardware accelerators can take the form of
CPUs, ASICs, GPUs, and FPGAs. In such event, CPUs are
combined with other hardware for utilizing the DL networks.
When hardware accelerators are inadequate, one or more of
the platforms noted above, like CPUs, GPUs, FPGAs, and
ASICs, are used together for the training inference of DL
algorithms [36], [37].
Recently, application-specific platforms (e.g. FPGAs,
ASICs) are becoming more popular [38] due to their struc-
tural parallelism capability, favouring DL algorithm training
in program execution time and accuracy. It is to be high-
lighted that there is a gap in the literature on the need for a
design encompassing high FPS throughput and mAP-mIoU
value, better performance at a lower cost, multi-tasking on
a single hardware, and integration into memory-constrained
devices to enhance the performance of ADAS tasks. There-
fore, undertaking an integrated hardware-software design
incorporating the above-mentioned features is crucial to
enable the widespread adoption of autonomous vehicle tech-
nologies.
In light of this information, we preferred the FPGA-based
MPSoC architecture because of its ability to perform parallel
processing, its price/performance compatibility and its more
flexible structure. We have realized an efficient hardware-
software co-design on the MPSoC structure. We created our
own DPU architecture on the programmable logic (PL) side
so that the ADAS multi-task learning yields better results
than the existing studies. We arranged the computationally
demanding parts of the DL model to be on the DPU and
the video pre-processing, task allocations and inference parts
on the ARM. For DPU-ARM data interaction, we used the
advanced extensible interface - direct memory access (AXI-
DMA) and pipeline architecture.

VOLUME 4, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. CONTRIBUTIONS
We have given the study’s main contributions to the literature
in a list as follows;

1) We developed ADAS multi-task learning system,
which can perform several tasks, including semantic
segmentation, multi-object detection, line detection,
and derivable area detection, on a single piece of hard-
ware. This approach can lead to efficient and effective
development of embedded systems, particularly for
ADAS applications.

2) We enhanced the efficiency of our model for resource-
limited embedded devices by examining its backbone.
To reduce its memory footprint on constrained plat-
forms, we quantized the model using int-8 bits.

3) We constructed effective optimizations to the proposed
model to improve its performance without affecting the
accuracy of the inference.

4) We assembled the programmable DPU reserved for the
convolutional neural network.

5) Through hardware-software co-design, our proposed
approach offers high performance and low energy
consumption when compared to other hardware archi-
tectures for similar tasks. We conducted a feasibil-
ity study by deploying the proposed model on low-
power embedded devices and demonstrated real-time
processing using a prototype design. Specifically, we
investigated the ability to program traditional program-
ming languages, such as Python and C++, in hetero-
geneous MPSoC architecture with hardware-software
co-design.

The remaining paper scenario is as follows. Section II
contains a discussion on the design methodology of the
proposed model. Initially, an overlay is designed utilizing
AMD-Xilinx Vivado 2022.1, which is then imported to the
MPSoC-FPGA-based development board. The performance
of software design and enhancements within the Python
environment follows this. Notably, the focus here is also on
the model’s training, quantization, and compilation. Lastly,
the experimental setup and execution of the .xmodel file
quantized and compiled using vai_q_pytorch are deliber-
ated. In Section III, a rigorous comparative analysis of our
findings with analogous studies from the existing literature
is undertaken, with primary emphasis on parameters such
as power consumption, reliability, longevity, accuracy, and
overall efficiency in order to optimize the quality of the
design. Concluding the paper, Section IV encapsulates the
summative observations drawn from the entirety of the article
and clarifies prospective avenues for future research.

II. METHODOLOGY
This section raises a broad methodological strategy adopted
for our research. It commences with a discussion on the
structure of the multi-task learning network and its pertinent
subtopics. Following this, an exploration of the hardware
design section and its associated subtopics is presented,

developed utilizing the Vitis unified software platform and
the Vivado 2022.1 integrated development environment. Ul-
timately, the QAT for the model incorporating a ResNet-18
shared backbone encoder with SSD is addressed in this work.

A. INDUCTION
Designers extensively use DNNs in ADAS, and this study
focuses on improving and accelerating DL-based ADAS
algorithms. The development and acceleration of DNNs have
been possible with software optimizations. Optimizations are
usually possible by executing the algorithm faster, paralleliz-
ing it or incorporating libraries such as PThreads, OpenCL,
and MPI into the algorithms. In addition, software optimiza-
tions are aimed at preventing bottlenecks of algorithms by
using the specified methods. Unfortunately, studies on DNNs
have caused models to be more complex and consist of
millions or even billions of parameters. This concern brings
about the inadequacy of software-based optimizations.
The evolution of semiconductor process technology has facil-
itated using hardware as an accelerator and optimizing soft-
ware. This has culminated in a prevalent trend among recent
state-of-the-art studies to integrate hardware and software. In
alignment with these developments, a DPU-based hardware
accelerator has been incorporated into our research, along-
side software optimization utilizing high-level languages,
namely C/C++ and Python.
The contributions of this study to the existing scholarly
discourse are elaborated upon in Section I-C. Following this
overview, the particulars will be explored in-depth within
this section. The sequence of the discussion begins with the
system’s infrastructure, progresses to the hardware design,
and finally delves into the software design and its associated
optimization methodologies.

B. MULTI-TASK LEARNING NETWORK
In the current landscape, the majority of networks focus
on resolving a singular, specific task. However, in practi-
cal applications, a higher degree of efficiency is typically
achieved by unifying several individual algorithms into a
single comprehensive learning framework. This unification
is made possible by multi-task learning networks, which
amalgamate multiple tasks into a single cohesive unit. The
efficiency of this method hinges on leveraging the relation-
ships between these distinct tasks and optimizing them for
real-time applications.
Multi-task learning networks combine various functions into
a suitable task, exploiting the interrelationship between dif-
ferent tasks. This study combines four different learning
algorithms for ADAS and presents it as a single learning
network. Integrating algorithms that perform multiple in-
dividual tasks into a single unified learning framework is
more efficient in real-time applications. As a result, networks
generalize a more accurate representation of functions by
sharing features between each task, thus improving learn-
ing efficiency and increasing prediction accuracy. Addition-
ally, multi-tasking learning can reduce overall network size

6 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Shared Backbone
Encoder

ca
r

ca
r

ca
rc
ar

Matching &
Detection

Dataset

Input Video Stream

Segmentation
Subnet

Dense

SSD Prediction & Bounding boxes

MaxPool2d

QuantReLU

QuantConv2d

Features from encoder

Result = argmax(g(x))

Feature extractor

VGG-16
through Conv5_3

39x39
Conv4_3

Feature
layers

FC
6
 & FC

7
 19×19

Conv
8_2

 10×10

Conv
9_2

 5×5

Conv
10_2

 3×3

Conv
11_2

 1×1

Convolutional
layer

Conv, Batch-Norm, ReLU

Dilated Convolution

Up-sampling, Concat, Conv.

Up-sampling, Conv.

FC6 & 7

C8_2

C9_2

C10_2

C11_2

FC6 & 7

C8_2

C9_2

C10_2

C11_2

Function g(x)

Loss

FIGURE 1. General overview of the ADAS multi-task learning.

(memory footprint) and computational complexity by sharing
backbone layers. This provides convenience for resource-
constrained platforms and is beneficial for quick inference
needs.
Our proposed ADAS multi-task learning consists of a shared
backbone encoder, a segmentation subnet, and a detection
subnet, as in Fig. 1. The subnet models have been discussed
in detail to gain a better understanding.

1) Shared backbone encoder

Various computer vision tasks, including object detection, are
addressed using complex CNN architectures. The construc-
tion of object detection or segmentation architectures is based
on CNN models initially trained for image classification,
thanks to the principle of transfer learning. In this context,
CNN serves as the feature extractor and forms the backbone
of the object detection model. This backbone processes input
data, focusing on specific features to extract detailed concep-

tual elements.
The study’s model is rooted in the ResNet18 architec-
ture rather than using deeper structures such as DenseNet,
ResNet101, or GoogleNet. These have numerous hyper-
parameters and high computational densities. This choice
enables the operation of the model on open-source and
resource-limited embedded devices. The model is con-
structed through transfer learning, with initial training target-
ing object detection, segmentation, and classification. Perfor-
mance optimization of the model is achieved by employing
a shared backbone. This approach facilitates efficient multi-
task learning for ADAS and reduces the computational load,
positioning it as an effective solution for real-world applica-
tions. The strategic design of the model was undertaken with
these considerations in mind.

VOLUME 4, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Point-wise Convolution

Dept-wise Convolution

Dk×Dk×1

Kernel

1×1×k

Convolution

Channels Map

Output Map3 Channel
Input

FIGURE 2. Separable dept-wise convolution architecture.

Quantize
Parameters

Quantize
Activations

FP32 Neural Network INT8 Quantized
Neural Network(Quantization

Less bits per parameter)
Vai_q_pythorch Quantizer

Parser

Code-generator

DPU Instruction

Vitis AI Compiler

101000100100
001110001101
101010001111
001000110000
101010101010
010101010101

Optimizer

Quantization, Calibration and Fine-tuning Compiles the quantized model for execution

FIGURE 3. An overview of quantization and compilation of FP32 bits NN model.

2) Detection subnet

Our research adopted a single-stage SSD [5] as a detection
decoder to fulfil real-time application needs and enable quick
inference. The SSD employs a multi-scale feature map for
swift object detection. However, as the CNN structure pro-
gressively downsizes the spatial dimensions, it also lowers
the resolution of the feature map. Hence, the SSD uses lower-
resolution layers for detecting and positioning larger-scale
objects. As such, our research opted for a 4x4 feature map
for identifying large objects. After VGG16, SSD introduces
six extra convolution layers, with five dedicated to object de-
tection. This layer configuration prompted us to generate six

predictions on three rather than the conventional four, lead-
ing to approximately 8732 predictions across these layers.
This strategic choice contributed to our model’s efficiency
and robustness, enhancing its ability to make precise object
detection under various conditions.

3) Segmentation subnet

As illustrated in Fig. 1, the segmentation subnet’s archi-
tectural design incorporates several learnable up-sampling
layers. This subnet comprises a 3x3 convolution layer, layers
of batch normalization, and multiple layers with activation
functions. The output tensor size of one convolution block

8 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

layer and the input tensor size of another layer remain con-
sistent, with only up-sampling altering the tensor size.
A convolution block is initially applied at the subnet’s bot-
tom, facilitating extracting of meaningful semantic features.
Instead of using pooling to extract low-resolution features,
three convolution blocks incorporating a dilated layer are
employed. Given that the pooling process can result in a loss
of detail, applying dilated convolution provides more relevant
results for extracting deep features than standard convolution
and subsequent pooling processes. After the deep feature ex-
traction, up-sampling is performed to restore the spatial res-
olution. In the processing methodology, hints about objects
provided by the encoder properties are integrated into the
decoder side to delineate the boundaries with more precision.
Feature summation is used in place of element accumulation
to enhance inference accuracy.

4) Software optimization
FPGAs and SoCs implement domain-specific architectures to
optimize CNN in applications, including inference rate, la-
tency, and hardware utilization. Our ADAS multi-task learn-
ing model runs on ZYNQ Ultrascale+ MPSoC architecture
as a co-design where DPU and ARM are used together. The
DPU accelerates the computing workloads of DL inference
algorithms commonly used in various computer vision appli-
cations. Therefore, the DPU performs the CNN computations
here, while the ARM performs the pre-and post-processing of
the input signal.
Furthermore, depth-wise separable convolution (DWSC) is
adapted to the on-chip pipeline method to process efficiently
in parallel, thereby reducing off-chip memory access. Thus,
the DPU core significantly improves run-time scheduling
efficiency during the computation of layers. DWSC decreases
computational intensity [39] approximated to normal con-
volution operations. DWSC has the fundamental principle
of separating two procedures dept-wise convolution (dwc)
and point-wise convolution (pwc). Pwc has a 1x1 standard
structure that follows deep convolution (see Fig. 2). It col-
lects feature information from different channels in the exact
spatial location, thus reducing the computational cost and
memory footprint of separable convolutional networks.
In an effort to optimize memory utilization on the ARM
(Quad-Core Cortex A-53) processing engines (PEs), care-
ful data allocation was enacted to prevent unnecessary re-
reading. This facilitated the creation of an adaptable infras-
tructure for diverse neural network models. Similarly, multi-
threading and a pipeline architecture were implemented to
leverage the DPU and Quad-Core PEs’ full potential on the
Kria KV260 development board. As a result, high efficiency
was attained by mitigating delays during data communication
between the PL and the PS. The processing duration of
the PL, observable during data transactions via AXI-DMA,
underscores this improvement.
A significant software-side enhancement was the quantiza-
tion of the model, as depicted in Fig. 3. This modification
resulted in a model with a memory footprint well-suited to

resource-constrained devices, thereby considerably reducing
computational density. Although model quantization may
slightly impair inference accuracy, the benefits are suffi-
ciently significant to overlook this minor setback. A detailed
account of the improvements and inference results obtained
are comprehensively discussed in Section III.

C. HARDWARE (OVERLAY) DESIGN
The ZYNQ architecture comprises a customizable MP-
SoC incorporating a quad-core ARM Cortex-A53, dual-core
ARM Cortex RF53, ARM Mali 400MP and a conventional
PL integrated circuit (IC). In addition, MPSoC is equipped
with fast and efficient connections and supports the AXI stan-
dard. The system’s design phase requires tasks to be allocated
between the processor and the FPGA sections, known as PS
and PL, based on the system requirements. This allocation
is a critical step as the overall speed and functionality of the
program depend on how tasks are distributed between PS and
PL sections. The entire system’s performance is influenced
by the tasks assigned to each team. Our research proposal
allocated the high-speed and computationally intensive parts
to PL while assigning the remaining roles to PS.
Identifying the functional blocks in the hardware design,
we integrated them as IPs to establish the necessary AXI-
DMA interfaces between PL and PS, as depicted in Fig.
4. Digital hardware development was carried out using the
Vivado 2022.1 integrated development environment, while
high-level synthesis integrated system design was conducted
in PL. The hardware accelerator design was prepared in the
PL environment and comprised the overlay comprising IP
blocks.
The ARM is utilized for pre-processing and post-processing
tasks in this study, exploiting the capabilities of high-level
languages such as Python and C++ and the OpenCV library.
As part of the methodology, the decode thread is programmed
to carry out resize functions on images of 1920x1080 and
320x512 resolutions. During the ML inference phase, scale
and mean value subtraction operations are performed on the
ARM, leveraging the capabilities of the Vitis-AI library. The
remainder of the task is executed within the PL, specifically
in the DPU. Due to the convolution process’s intricate nature
and heavy processing demands, the high-performance com-
putational abilities of the DPU are employed to carry out this
process successfully.
The execution of tasks in this study specifically involved
the use of the AXI4 stream interface, a decision influenced
by the superior functionalities of the Direct Memory Access
(DMA) feature, which facilitated a notably rapid transfer of
image pixel values. Strategic adjustments to the master port
were carried out to facilitate seamless interaction between the
PS and the PL. These modifications included setting the bit
width for the AXI HPM0 FPD at 32, the AXI HPM1 FPD at
128, and the AXI HPM0 LPD at 32. Further configurations
were made to the data width of the slave interface, with
the AXI HPC0 and HPC1 explicitly set at 128 and the
AXI LPD at 32. These configurations proved essential in

VOLUME 4, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

zynq_ultra_ps_e_0

Zynq UltraScale+ MPSoC

M_AXI_HPM0_FPDS_AXI_HPC0_FPD

S_AXI_HPC1_FPD

S_AXI_LPD

maxihpm0_fpd_aclk

saxihpc0_fpd_aclk

saxihpc1_fpd_aclk

saxi_lpd_aclk

pl_ps_irq0[0:0]

pl_resetn0

pl_clk0

pl_clk1

proc_sys_reset_2

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_1

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

proc_sys_reset_0

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

dpuczdx8g_0

Deep Learning Processing Unit (DPU)

DPU0_M_AXI_DATA0

DPU0_M_AXI_DATA1

DPU0_M_AXI_INSTR

S_AXI

s_axi_aclk

s_axi_aresetn

dpu_2x_clk dpu_2x_clk_ce

dpu_2x_resetn

m_axi_dpu_aclk

m_axi_dpu_aresetn

dpu0_interrupt

clk_wiz_0

Clocking Wizard

resetn

clk_in1

clk_out1

clk_out2

locked

clk_out2_ce

FIGURE 4. Overlay design of ADAS multi-task learning hardware.

maintaining the AXI4 protocol for the DPU architecture,
a B4096 model. Such adaptations, aimed at enhancing the
system’s design, improved the interaction between hardware
and software components while optimizing task execution
within the system.

1) Hardware optimization
DL models exist in various types, and within resource-
constrained environments, it is unlikely to create a single
hardware parameter that caters to all models. Typically,
designs with fewer hardware resources lead to improved
FPGA timing, higher clock frequency, increased throughput,
and reduced power consumption. For applications similar to
ADAS, the presented design provides a viable compromise
with the opportunity for customization through fine-tuned
parameters. The DPU retrieves instructions from off-chip
memory to guide the computing engine’s procedure, with
the Vitis-AI compiler generating these instructions, which
include layer-fusion and optimizations.
This setup uses on-chip memory for input activation, feature
maps, and output metadata buffering to maximize efficiency.
Further, software optimization is employed to reuse data
as much as possible, minimizing external memory band-
width requirements. The DPU architecture’s computing en-
gine leverages a deep pipeline, and the PEs fully utilize

fine-grained building blocks such as multipliers, adders, and
accumulators. This methodology maximizes the benefits of
the hardware accelerator structure.
It is possible to configure the convolution architectures
available within the DPU IP architecture to align with
the parallelism of the convolution unit. Architectures vary
in PL resource consumption. Larger architectures consume
more resources and thus show higher performance. On the
other hand, we prefer smaller architectures for our resource-
constrained device. When we use minor architecture, we
experience a decrease in our device performance. To avoid
dropping the performance, we used a Double Data Rate
(DDR) approach to improve the performance we get with the
DPU. In this formatting, we have specified 1x clock input
for general logic and 2x for Digital Signal Processing (DSP)
slices.
The cascade length’s usage presents a crucial aspect of
leveraging DSP. A trade-off between resource usage and
timing performance always exists when determining the DSP
cascade’s size. For instance, deploying a more significant
cascade length reduces resource consumption but delivers
subpar timing performance. Conversely, opting for a shorter
cascade length reduces resource usage and significantly im-
proves timing performance. Hence, in smaller devices with
limited logic resources, it is advisable to employ more exten-

10 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

sive cascade lengths.
In light of resource usage and timing performance, the study
deduced that the DSP’s ideal maximum cascade length is
four. The DPU IP core’s use of DSP elements forms the basis
for whether DSP usage is high or low. In instances where
DSP element usage is low, multiplication only is performed,
whereas high DSP element usage involves both multiplica-
tion and accumulation. By setting DSP usage as high in the
hardware design, a reduction in the computational density of
the quantized DWSC model led to increased timing perfor-
mance. Moreover, enabling UltraRAM memory in the hard-
ware design allowed for the use of the more significant DPU
architecture, given the device’s lack of sufficient BRAM, ef-
fectively reducing the resource constraint of the development
board. Fine-tuning performed on DSP, BRAM, and Ultra-
RAM culminated in a more optimized PL process, yielding
timing requirement values at an optimal level. As a conse-
quence, the timing summary revealed values of 1.135ns for
Worst Negative Slack, 0.001ns for Worst Hold Slack,
2.000ns for Worst Pulse Width Slack and finally, 0.009ns
for Total Negative Slack.

D. QUANTIZATION AWARE TRAINING (QAT)
Designers have been tailoring more comprehensive archi-
tectures to enhance the performance of CNN models. Such
adaptations, including broader and more profound CNN ar-
chitecture, have successfully reduced the classification error
rate for specific problems. Authors of a particular study [40],
utilizing various CNN models, exemplified the relationship
between computational density and memory requirements
in ImageNet classification. They observed a decrease in the
ImageNet classification error rate from 17% to 2.9%. Conse-
quently, expanding the network model incurs an increase in
computational complexity. This escalation, in turn, leads to
a considerable surge in memory requirements. Additionally,
bandwidth concerns arise due to the millions of parameters
found in CNN models.
Techniques such as model pruning, weight quantization,
and activation function quantization [19], [41] aid in reduc-
ing computational complexity. Misuse of the quantization
method can diminish inference accuracy, while the pruning
method can prevent network over-fitting during training.
Aiming for a goal-oriented model, the designer needs to
balance these trade-offs. A potential pitfall of quantizing
CNN model weights and activation functions is data loss,
attributed to the inability to restore the floating point after
quantization and de-quantization fully. To articulate this issue
in mathematical terms;

x = fd(fq(x, sx, zx), sx, zx) + ∆x (1)

where;
fd and fq are de-quantization and quantization functions,
respectively. ∆x is an undetermined small value. Suppose
∆x = 0, the quantized integer models’ inference accuracies
are the same as those of the floating point models. Unfortu-

nately, this is not the case. The model performs well after
training when the model parameters are in FP32 (32 bits
floating-point arithmetic). However, setting the precision to
int-8 (8 bits integer) or lower can lead to standard inference
even if the network is well-trained. In contrast, the quantized
network has a much lower memory requirement than the
floating point counterpart, resulting in less energy consump-
tion by the system. As a result, the quantized model is more
suitable for battery-powered embedded devices.
This study delves into the implementation of real-time ADAS
for an FPGA-based MPSoC hardware accelerator by quan-
tizing the ResNet18 model with SSD assets. The weights and
activation functions of the model were quantified as int-8 bit
low precision integers and a performance comparison of the
network was carried out. The PyTorch framework was uti-
lized to construct the model, and the vai_q_pytorch library
was used to quantize the weights and activation functions.
It is noteworthy that vai_q_pytorch is a Vitis AI quantizer-
supported library that operates on the PyTorch framework.
The Vitis AI [21] quantizer takes in the floating point model,
conducts pre-processing, and then quantizes the weights
and activation/biases at the specified bit-width. The pre-
processing performed by Vitis AI folds the batch normal-
ization and eliminates nodes from the model that are not
necessary for inference. Thanks to batch normalization, si-
multaneous learning is possible across layers in the network.
Without batch normalization, the use of a high learning rate
could lead to the issue of disappearing gradients. However,
with batch norms, a higher learning rate can be used since
alterations in one layer do not impact the others.
Only the initial value is set as QAT is employed since the
learning rate value will undergo automatic updates during
training. The authors’ extensive investigation and explana-
tion of QAT are presented in their work [43], examining
its various components and mechanisms. This article is
recommended for those desiring a more complete and in-
depth understanding of QAT. The detailed information in this
work can provide further illumination and enrichment to the
reader’s comprehension of this specific area of study.
The QAT technique in neural networks strives to minimize
the effect of data loss during training, with the inference
accuracy of the model experiencing only minimal impact.
Given that the weight and activation tensors change during
neural network training, a quantization and de-quantization
layer can be added for each varying tensor in QAT. Differing
from (1), (2) and (3) can be defined in the following manner;

x̂ = fd(fq(x, sx, zx), sx, zx) (2)

x̂ = sx(clip(round(
1

sx
x+ zx), αq, βq)− zx) (3)

Data types for quantized tensors are still floating-point ten-
sors. Therefore, we need to train as if there were no quan-
tization layers. In addition, the main problem with QAT is
that such quantization layers cannot be differentiated [42].
On the other hand, the straight-through estimation (STE) [44]

VOLUME 4, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

derivative strategy excels when used for QAT. The identity
function in the clipping range [α, β] and the constant function
outside of the clipping range [α, β] are how STE handles the
quantization and de-quantization functions. Thus, the result-
ing derivatives are 1 if [α, β] is in the clipping range and 0
if outside of the field. We can define symmetric quantization
mathematically as in 4.

∂x̂

∂x
=

{
1 if α ≤ x ≤ β

0 else
(4)

Scaling factors can be discovered during QAT thanks to STE.
For instance, the Learned Step-Size Quantization (LSQ) [45]
is obtained from the scaling elements’ gradient quantization
function. Starting from 1, we can get 5 to 8 as follows;

∂x̂

∂sx
=

∂sx
∂sx

(
clip(round

(
1

sx
x, αq, βq

))
+ (5)

sx
∂
(
clip

(
round

(
1
sx
x
)
, αq, βq

))
∂sx

= clip

(
round

(
1

sx
x

)
, αq, βq

)
+ (6)

sx
∂
(
clip

(
round

(
1
sx
x
)
, αq, βq

))
∂sx

If we define the numerator part of (5) as any vari-
able (θ) in order not to rewrite it at length; θ =

clip
(
round

(
1
sx
x
)
, αq, βq

)

∼=

θ + sx
∂(1

sx
)x

∂sx
if α ≤ x ≤ β

aq + sx
∂(bq)
∂sx

if x < α

bq + sx
∂(bq)
∂sx

ifx > β

(7)

=

round
(

x
sx

)
− x

sx
if α ≤ x ≤ β

aq if x < α

bq if x > β

(8)

Here, it is possible to learn or adaptively select different bit
widths for each layer in a model or a uniform bit width for
the entire model in this case. The vai_q_pytorch library may
quantize the activation functions of the model according to
the following equations.

QuantReLU(x,zx,yx,k) =

{
zy if x < zx

zy + k(x− zx) if x ≥ zx
(9)

When zx = 0, zy = 0 and k = 1, the generally utilised
ReLU in DL models is a particular case of the above descrip-
tion.

ReLU(x,0,0,1) =

{
0 if x < zx

1 if x ≥ zx
(10)

Here, we have given the Mathematically analysis steps of the
QuantReLU function.

y = ReLU(x, 0, 0, 1) (11)

=

{
0 if x < zx

1 if x ≥ zx
(12)

= sy(yq − zy) (13)
= ReLU(sx(xq − zx), 0, 0, 1)

=

{
0 if sx(xq − zx) < 0

(sx(xq − zx) if sx(xq − zx) ≥ 0

=

{
0 if xq < zx

sx(xq − zx) if xq ≥ zx
(14)

Consequently;

yq =

{
zy if (xq < zx

zy +
sx
sy
(xq − zx) if xq ≥ zx

(15)

= ReLU(xq, zx, zy,
sx
sy

)

Hereby, to achieve the QuantReLU corresponding to the
floating-point yq = ReLU(x, 0, 0, 1), we require to serve;

yq = ReLU(xq, zx, zy,
sx
sy

) (16)

Where; zx and zy are zero points, s is a positive floating-point
scale element and xq is quantized matrices,

E. EXPERIMENTAL SETUP
This section details the experimental setup required for the
real-time execution of ADAS multi-task learning. The dis-
cussion initiates with an explanation of the fundamental op-
eration of the model and the significance of pipeline design.
Following this, insights about the datasets used for this study
will be shared. The next segment will dive into the process of
model training. Concluding the section, an overview of the
hardware-software co-design involved in this study will pro-
vide a comprehensive understanding of the overall process.

1) System setup
Our research leverages the capabilities of the AMD Xilinx
Zynq UltraScale+ MPSoCs, uniting an FPGA with PL and
an ARM processor inside a PS into a cohesive entity. The
chosen experimental setup utilizes the Zynq UltraScale+ MP-
SoC Kria KV260 Vision AI development board from AMD
Xilinx, offering 4GB DDR memory due to its compatibility

12 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Use of datasets

Datasets Train Validation Test
BDD100K 70000 10000 20000

KITTI 7480 - 7517
CityScapes 2975 500 1525

and efficiency in executing the investigated algorithm.
The focus is primarily on the ARM Cortex A53 (PS) and
PL. The PS coordinates multiple operations, encompass-
ing monitor connections, pre-processing and post-processing
task management, the interface functions oversight, USB
interface regulation, and operating system activity control.
Simultaneously, PL develops optimized on-chip and off-chip
memory access techniques, formulates pipeline strategies,
and supports hardware acceleration functions.
As depicted in Figure 5, multiple threads are established as
pipelines and operated in parallel to maximize efficiency.
This pipeline design strategy yields considerable benefits,
contributing to a roughly 50% throughput increase, and
diminishing design complexity and resource usage, as il-
lustrated in Fig. 6. With each implemented FPGA kernel
embodying a single thread, the inherent parallelism within
this thread can be fully exploited.

2) Datasets
We are concentrating our research on improving autonomous
driving in driver-operated and driverless vehicles by com-
bining object detection and segmentation in a multi-task
learning approach. We trained our model on three publicly
available datasets: BDD100K, KITTI, and CityScapes. We
mostly used the BDD100K dataset, known for its various
autonomous driving scenes, and KITTI, offering object de-
tection in three separate classes for both object detection
and segmentation tasks. For semantic segmentation across
19 categories, we turned to the CityScapes dataset. Table
2 outlines the dataset distribution we used for training and
inference.
We merged datasets into common categories to further en-
hance inference accuracy and efficiency. In particular, we
merged the CityScapes and BDD100K datasets for segmenta-
tion tasks, while the BDD100K dataset was utilized for object
detection. The data was portioned for model training, testing,
and validation, resulting in highly promising outcomes for
multi-task learning. The resulting data subsets have demon-
strated highly favourable outcomes for multi-task learning.
Evaluating the performance of our model, we employed stan-
dard mAP (17) and mIoU (18) criteria. The mAP was used
to measure object recognition, while the mIoU was used to
evaluate segmentation. The results suggest that consolidating
datasets into shared categories significantly improved the
inference’s accuracy and efficiency in multi-task learning.

mAP =
1

n

k=n∑
k=1

APk (17)

Here, APk is the AP of class k, n is the number of classes,

mIoU =

(
1

ncl

)∑
i nii(

ti +
∑

j nji − nii

) (18)

Where ncl represents the number of classes, ti is the total
number of pixel in class i, nii represents true positives, nji

false negatives.

3) Model training
The construction of the sophisticated multi-task model neces-
sitated a meticulous selection of loss functions. Furthermore,
the extensive capacity of the model and the management of
sizable datasets required the use of a high-performance GPU.
The model was segmented into several subnets subjected to
independent training to alleviate the computational burdens
associated with end-to-end training.
The initialization of the shared backbone subnet was car-
ried out during the pre-training phase, which capitalized
on the extensive versatility of the ImageNet dataset, rec-
ognized for its proficiency in large-scale image classifica-
tion assignments. This crucial step provided the backbone
with meaningful representations for both tasks. The training
protocol encompassed several stages. Initially, the semantic
segmentation and backbone encoder subnets were rendered
passive, followed by the training of the multi-object detection
subnet. Afterwards, training was initiated for the semantic
segmentation and backbone encoder subnets, achieved by
temporarily turning off the object detection subnet. Each
subnet was subjected to 100,000 training iterations to ensure
thorough learning.
The commencement of the training phase was centred on
setting up the general contextual information within the
images, designated as weights. This stage was sustained until
the loss function could indicate convergence towards a global
minimum value. During the training phase, the quantization
of weight and activation functions was expedited by apply-
ing QAT, aiming to curtail unnecessary quantization tasks.
Additional steps included pre-processing measures, such as
adapting the size of the input image, required explicitly for
multi-object detection, to align directly with the mesh input
size.
The accomplishment of the pre-training phase led to the fine-
tuning of the entire multi-tasking model, with task-relevant
labelled data incorporated into the process. The parameters
of the shared backbone network were updated in parallel
with those of the task-specific subnets. The optimization
algorithms previously described were utilized to minimize
the weighted sum of the loss functions. A series of tests on
various hyperparameters, encompassing learning rate, weight
decay, and batch size, were conducted to achieve the model’s
most effective configuration. A validation set was employed
to monitor the model’s performance.
The objective classification function for the object detection
subnet was defined as focalloss2d and a soft L1 loss was
employed for bounding box regression, thereby tailoring

VOLUME 4, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

OpenCV, PyThon, C++ on ARM

1920x1080

UVYV

Decode

320x512
Decode Queue

1920x1080
Decode Queue

DPU

Multitask-learning
NN model

Bbox
Overlay

Display

Post-processing

on ARM

Segmented and bboxed

frames @ 1080p

1920x1080 BGR

Resize and color space conversion

Organize

Result Organize
Queue

1920x1080
Decode Queue

Thread QueueVitis AI Library

High performance computing

1920x1080 BGR

320x512 BGR

FIGURE 5. Fundamental execution of the ADAS multi-task learning

READ COMPUTE WRITE

READ COMPUTE WRITE

READ COMPUTE WRITE

READ COMPUTE WRITE

CLK

Throughput = 1

Loop latency = 6

A

C

D

B

With Pipeline
1 load = 3 clk
4 load = 6 clk

Without Pipeline
1 load = 3 clk
4 load = 12 clk

FIGURE 6. Kernel pipeline design

the model specifically for object detection tasks. Notably,
focalloss2d effectively countered the influence of class im-
balance during the training phase, whereas the soft L1 loss
function played a role in diminishing the effect of outliers in
bounding box regression. Stochastic gradient descent (SGD)
was subsequently applied to refine the model, setting a learn-
ing rate 1e-5 and a momentum value of 0.9.
In the SSD multi-box configuration, a batch-size ratio of
16 was set, and binary cross-entropy (BCELoss) was uti-
lized as the loss function, guaranteeing a proficient training
process. Encoder weights were initialized via a pre-trained
ImageNet model for the segmentation subnet. The choice
of LovaszSoftmaxLoss [46] facilitated pixel-level classi-
fication and semantic segmentation tasks. The model’s opti-
mization relied on the SGD optimizer, assigning a learning
rate of 1-e2. Notably, during training, the batch size for the
segmentation subnet was designated as 2.
After training and fine-tuning procedures, the ADAS multi-
task learning network was evaluated on the test set, employ-
ing relevant metrics for each task. Specifically, mAP was
used for object detection, while IoU served the segmentation

task. Such assessments aided in approximating the model’s
effectiveness and efficiency, subsequently offering critical
insights for potential enhancements and refinements.
SGD and LovaszSoftmaxLoss can be specified mathemati-
cally as in 19, 20 and 21, respectively.

θ = θ − η.∇θJ(θ;x
(i); y(i)) (19)

∇ =
∂

∂x
ı̂+

∂

∂y
ȷ̂+

∂

∂k
ẑ (20)

Here, ∇ is the gradient operator, η is the learning rate, x(i) is
the training sample, and y(i) denotes the label, respectively.

loss(f) =
1

|C|
∑
c∈C

∆Jc
(m(c)) (21)

Where ∆Jc
is Jaccard loss extension, m(c) is the vector of

errors and C represents class.
You can find the features of the workstation we use for
training in Table 3.

TABLE 3. Specifications of the computer used in evaluation

Parameters Value Unit
CPU Manufacturer INTEL -

CPU Variant i7-7700HQ -
CPU Clock Frequency 3.8 GHz

CPU Core Size 8 -
Cache Size 6 MB
RAM Size 32 GB

GPU Manufacturer NVIDIA -
GPU Chipset GTX1080 -

GPU RAM Size 6 GB

4) Hardware - software co-design
This research emphasizes the creation of a versatile system
input compatible with data from camera or sensor fusion.
Such flexibility supports modifications in input modes via

14 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

adjustments to the kernel or root file format of the real-time
operating system. This requirement is crucial given the piv-
otal role that machine vision systems serve in the automotive
industry, particularly in object detection and semantic seg-
mentation. Consequently, optimizing hardware and software
co-designs is critical to meet the demands of throughput and
power consumption.
The adopted approach in this study entails a meticulous eval-
uation of the algorithm, arranging its components based on
the time consumption profiles for each process. The forma-
tion of this hierarchy was directed by the criteria established
within this research. This process facilitated the identifica-
tion of specific segments of the algorithm where single-
instruction multiple-data (SIMD) operations were prevalent.
An observed increase in power consumption in certain algo-
rithmic sections was attributed to an escalation in algorithmic
latency and the frequency of memory access. Given that,
each memory access operation requires energy, an escalation
in these operations’ frequency directly affects the system’s
energy consumption. Consequently, power consumption ele-
vates with an increase in the frequency of these accesses, as
demonstrated in certain parts of our algorithm. This insight
proved vital in identifying the algorithm’s energy-intensive
areas, optimising our overall system design for enhanced
energy efficiency.
Modifications were made to several settings to circumvent
potential resource constraints and amplify overall perfor-
mance. ALU parallelism was set to 8, RAM usage to High,
channel augmentation was enabled, and the DSP cascade
length was extended to 4. Channel augmentation is optional
to boost DPU efficiency, especially when the number of
input channels is considerably less than the available channel
parallelism. This scenario is frequently seen in numerous
CNNs where the input channel of the first layer typically
comprises three, failing to utilize the hardware channels
optimally. However, even when the number of input channels
surpasses channel parallelism, channel augmentation can be
advantageous, albeit requiring more logic resources. Despite
the related costs, this feature could enhance the efficiency of
most CNNs. These optimizations’ importance lies in achiev-
ing a highly efficient system design.
Table 4 outlines two unique DPU configurations and their re-
spective utilization methods. Both configurations pose cred-
ible options for inference tasks, with this research choosing
the configuration presented in case 1. Each variable empha-
sized in the table affects inference and memory consumption
in distinctive ways. For instance, activating channel aug-
mentation can improve the overall efficiency for numerous
CNNs, although it may result in elevated LUTs consump-
tion, thereby creating obstacles for devices with restricted
memory. Moreover, it is critical to acknowledge that LUTs
consumption may also vary among different DPU architec-
tures, such as B1152, B3136, and B4096. Performance and
memory prerequisites are further influenced by the types of
ReLU used in convolution and ALU. A suggested setting for
ALU parallelism is 4 for devices with memory restrictions.

Nevertheless, this study chose a setting of 8 to cater to
performance requirements. This modification, while leading
to extra consumption of LUTs, FFs BlockRAMs, and DSPs
resources, is often considered negligible when prioritizing
performance.

TABLE 4. Performance comparison of two distinct DPU configurations for
hardware-software co-design

DPU Architecture
(B4096) Case 1 Case 2

Channel
Augmentation Enable Disable

ALU Parallel 8 4
DSP48 Maximal
Cascade Length 4 4

RAM & DSP48
Usage High High

Convolution
ReLU Type ReLU+ReLU6 ReLU+LeakyReLU+ReLU6

ALU
ReLU Type ReLU+ReLU6 ReLU+ReLU6

Memory Consumption
(Average) Higher Lower

III. RESULTS AND DISCUSSION
This research involves the Kria KV260 development board
and the Logitech c930e camera, as illustrated in Fig. 7. The
development board obtains a real-time video stream via USB
for processing on ARM. DPU enables the PL environment
to conduct complex computation and convolution operations,
which are conveyed to the monitor through an HDMI con-
nection. Performance evaluation was conducted via various
ADAS use cases, including object detection, segmentation,
line detection, and detection in drivable areas. The real-time
results of these specified ADAS tasks are demonstrated in
Fig. 8, showing proficient input video data processing.

FIGURE 7. A Comprehensive examination of the real-time implementation of
ADAS multi-task learning.

The platform’s accuracy was gauged through the mAP value
for object detection and the mIoU value for segmentation
and line detection. In contrast, the platform’s throughput
was evaluated using the FPS value. Analogous investigations
employing mAP and mIoU metrics have been presented
for reader comprehension. A literature review identified a

VOLUME 4, 2023 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Multiple object detection

(b) Drivable area detection

(c) Line detection

FIGURE 8. Real-time implementation of ADAS multi-task learning.

demand for multi-task ADAS research deploying MPSoC
FPGA.
The methodologies discussed presently might appear des-
ignated for diverse applications; however, their future in-
corporation in numerous sectors, notably those involving
autonomous vehicle technology and ADAS, is virtually in-
evitable. Notably, within the MPSoC-FPGA environment,
employing hardware-software co-design is poised to yield
enhanced outcomes, especially when software-accelerated
techniques are reinforced by hardware. Integrating hardware

and software in such a harmonized approach can significantly
leverage system performance, fostering advancements in the
forthcoming era of autonomous and assisted driving tech-
nologies.
In Table 5, we have reviewed the literature encompassing our
specified criteria. As discernible from the Table 5, the power
consumption, the number of tasks, and the performance
(GOPs) we recommend surpass those of the other studies.
Notably, although operation at [28] appears optimal regard-
ing power consumption, it only carries out the multi-object
detection task. The study closest to ours was conducted at
[48], where the researchers undertook multiple object de-
tection and segmentation tasks. Our investigation indicates
that their study’s mAP and mIoU values are satisfactory.
However, their power consumption exceeds ours, and they
perform fewer tasks. Thus, as demonstrated in the table, our
ADAS multi-task learning stands out in terms of both the
number of functions and the evaluation outcomes.
The performance evaluation results for object detection using
the specified dataset showed 51% mAP, indicating that the
Kria KV260 Vision AI platform can accurately detect objects
in real time. For segmentation, the platform achieved 56.62%
mIoU, demonstrating its ability to segment objects accurately
in complex scenarios. In line detection, the platform reached
43.86% IoU, indicating its ability to detect lines in the envi-
ronment accurately. In seeing the derivable area, the platform
also achieved 81.56% mIoU, demonstrating its ability to
detect the derivable location accurately. Furthermore, the
platform reached a throughput of 25.4 FPS at the optimized
+ pipeline design, indicating its real-time ability to process
multiple ADAS use cases.
To assess the performance of ADAS multi-task learning
on the Kria KV260 Vision AI Starter Kit Board, we con-
ducted a comparative study between two precision, FP32
and QAT-INT8, as illustrated in Tab. 6. This comparison
aimed to gauge how precision influences model performance
concerning computational metrics (FLOPs) and task-specific
outcomes. The FP32 model delivered 6.36 GFLOPs for
the computational metrics, while the INT8 model attained
nearly 25 GFLOPs. This boost in computational speed for
the INT8 model is anticipated due to the reduced numerical
precision, which leads to a lesser computational complexity
and memory usage. Consequently, it enables more operations
to be performed every second, resulting in a higher FLOPs
value for the INT8 model. Alongside this, a minor trade-off
between precision and task-specific performance outcomes
is noticed, with the FP32 model showing slightly improved
performance in segmentation and derivable area detection
tasks, owing to its higher numerical precision.
Conversely, the INT8 model showed comparable or slightly
superior performance in object and line detection tasks. Thus,
the selection between FP32 and INT8 hinges on the applica-
tion’s specific requirements. FP32 may be preferable when
the highest accuracy is a priority and computational resources
are not a limiting factor. However, the INT8 model is a
viable alternative for scenarios prioritizing computational ef-

16 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Performance comparison of the studies in terms of specified metrics

Ref. Methods Parameters Power
Consumption (w) mAP (%) mIoU / IoU(%) GFLOPs

[13] Multi-task
learning N 12.1 N 57.59 13.6

[28] Multiple
object det. 0.115M 3.118 N 67 N

[48] Multi-task
learning N 14.3 62.8 57.6 9

[49] Autonomous
Driving 65.2M 9.8 N N N

[50] Multi-task
learning 65.2M 7.34 N N N

ADAS Multi-task
Learning

Multi-task
learning 11.4M 7.19 51

Segmentation: 56.62
Drivable: 81.56

Line: 43.86
25

TABLE 6. Performance comparison of the study in INT8 and FP32 model
types

ADAS Multi-task
Learning

Floating Point
(FP32)

Quantization Aware
Training (INT8)

Segmentation
mIoU (%) 57.95 56.62

Multiple object
detection mAP (%) 51.29 51

Drivable Area
Detection mIoU (%) 82.63 81.56

Line Detection
IoU (%) 43.65 43.86

GFLOPs 6.36 25

ficiency and speed, still delivering competitive performance.
The optimal balance depends on the specific constraints and
requirements of the application.
As can be seen from Table 6, we preferred QAT-INT8 and
FP32 for comparison. There are methods for quantization, in-
cluding post-training quantization (PTQ) (also called direct-
quantization) and QAT. The memory footprint after quanti-
zation is similar in both methods. The main difference lies in
the performance of the model after quantization. Our model
that we trained with QAT was typically more resilient to the
effects of quantization and outperformed a model we quan-
tized with PTQ (i.e., it produced more accurate predictions)
given the same amount of memory. QAT aims to reduce
the accuracy disruption caused by the quantization process,
but the process is more time-consuming and computationally
expensive than PTQ.
We utilized multi-threading to improve the study’s through-
put and observed a significant performance improvement as
in Table 7. We followed the performance variation of the
DPU across varying thread sizes. It is well-known that the
DPU we utilized has a maximum thread limit of 4. While em-
ploying a vast number of threads enhances the performance,
it also significantly increases the DPU run-time value. Thus,
we can elaborate on a trade-off between the thread size and
run time. We also incorporated a DPU pipeline to enhance the
performance of CNNs processing on the FPGA fabric, result-
ing in further progress in the platform’s throughput. We use
the Vitis AI analyzer tool to measure the platform’s perfor-

mance inference for all allocation threads and tasks, as shown
in Fig. 9. In this context, every color denotes the speeds of
read and write operations in megabytes per second (MB/s)
for five distinct DDR ports. Additionally, the platform had
a low memory footprint, indicating its efficiency in memory
utilization. As a result, the Kria KV260 Vision AI platform
delivers high accuracy and throughput while maintaining low
power consumption and memory footprint. Furthermore, the
platform’s multi-task implementation and multi-class object
detection capabilities allow it to process complex ADAS use
cases. Our ADAS multi-task learning successfully integrated
a complex and large model into a development board thanks
to the hardware and software optimizations. Table 8 depicts
the resource usage of similar analyses. We offered a glimmer
of hope for resource-constrained devices by multi-tasking
on a single development board. Our study incorporated the
B4096 DPU architecture provided by AMD Xilinx, resulting
in maximum efficiency at low frequencies and with limited
resource usage. Our inference success and resource usage
are commendable compared to the other two studies. Our
hardware and software optimizations allowed for optimal
utilization of the development board, creating sufficient re-
source space to include various ADAS tasks. Overall, our
study is a cost-effective and efficient ADAS research solution
that can be deployed in real-world applications with minimal
modifications.
It is imperative to note that future investigations will not
remain restricted to CNNs and DNNs. Despite the extensive
applicability of these networks, there is an evolving trajectory
towards more simplified structures in artificial intelligence,
which could yield superior results compared to the highly
effective structures comprising convolutional layers, such as
DNNs and CNNs.
Indeed, relentless technological advancement has enabled
current models to offer plausible solutions to contemporary
problems. However, the escalating complexity of these prob-
lems necessitates formulating novel, diverse structures. This
concept is well-exemplified in the research indicated in [51].
Contrary to the traditional CNN methodology, this study
introduces the Physics Informed DL model. This paradigm

VOLUME 4, 2023 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 7. Performance comparison of DPU with and without optimized

Thread size
Optimized + Pipeline None-Optimized

DPU run-time (ms) ARM (PEs) average
run-time (ms) FPS DPU run-time (ms) ARM (PEs) average

run-time (ms) FPS

t - 1 33.551 146.874 10.5 33.901 153.784 8.6
t - 2 34.095 156.342 19 34.194 165.864 15
t - 3 34.788 176.1 22 34.491 186.78 18.86
t - 4 34.839 220.5 25.4 34.766 209.687 21

Memory
footprint 62.86 MB 69 MB

TABLE 8. Resource consumption of hardware architectures used in similar studies

ADAS multi-task learning [48] [49]

Resource Available Utilization Utilization
(%) Available Utilization Utilization

(%) Available Utilization Utilization
(%)

LUTs 117120 63445 54.17 70560 39772 56.37 274080 75000 27.3
LUTRAM 57600 7180 12.47 28800 3650 12.67 144000 N N

FFs 234240 112272 47.93 141120 59045 41.84 548160 146000 26.7
BRAM 144 135 93.75 216 123 56.94 912 280 30.7
URAM 64 48 75 N 0 N

DSP 1248 774 62.02 360 211 58.61 2520 N
BUFG 352 6 1.7 196 3 1.53 NA N

Platform XCK26 XCZU3EG ZU9
DPU

Architecture 1 x B4096 1 x B1152F 2 x B4096

Frequency
(MHz) 300 525 600

FIGURE 9. Performance evaluation of DDR ports read/write in Vitis AI analyzer

can be characterized as a physics-knowledge-informed deep
learning framework, wherein physics-based domain knowl-
edge is assimilated into the data-driven model as soft con-
straints. These constraints serve to guide and adjust the data-
driven model.
In parallel, the research in [52] elucidates Extreme Learn-
ing Machines (ELMs) as an alternative to traditional deep
learning methodologies, which typically encompass Deep
Belief Networks and Constrained Boltzmann Machines. This

approach streamlines the training process, a phase typically
protracted by the intricate fine-tuning of numerous parame-
ters and the complexity of the hierarchical structure. ELMs
achieve this through a non-iterative, rapid training process
facilitated by a random feature-matching mechanism.

IV. CONCLUSION AND FUTURE WORK
This study proposes a resourceful and efficient solution for
the execution of multi-task ADAS on an MPSoC-FPGA,

18 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

focusing on detecting multiple objects, lane identification,
drivable area detection, and semantic segmentation. Our
strategy provides an effective and efficient development path-
way for embedded systems while ensuring minimal power
consumption. As part of our comprehensive methodology,
we have incorporated a variety of adjustments encompassing
both software and hardware enhancements. On the software
aspect, we amalgamated several models and implemented a
unified learning algorithm, leading to a consequent quantifi-
cation of the model.
This software-level modification resulted in a notable re-
duction in memory consumption by approximately 9%. We
exploited parallelization techniques using variable threads
and pipeline architecture on the hardware aspect. The si-
multaneous software and hardware components design en-
sured that the algorithm performed with improved efficiency,
compatibility, and speed. As a direct consequence of these
comprehensive optimizations, the system exhibited increased
accuracy, enhanced performance, and minimized energy con-
sumption.
Notably, our research approach employed a single B4096
DPU, a measure that substantially reduced resource con-
sumption compared to prior research endeavours. This strat-
egy culminated in our system achieving an energy consump-
tion rate of 7.19w, an FPS value of 25.4, a memory footprint
of nearly 62.86MB, a multi-object detection rate of 51%
mAP, a segmentation rate of 56.62% mIoU, a drivable area
detection rate of 81.56% mIoU, and a line detection rate of
43.86% IoU. Given the data and results, ADAS multi-task
learning offers an effective, efficient, sustainable, and precise
system design for real-time ADAS applications. Further-
more, with its low power consumption, cost-effectiveness,
and compact design, this system presents a compelling so-
lution for real-world applications, as the experimental results
demonstrate the proposed method’s feasibility for conducting
real-time processing in low-power embedded devices for on-
road testing.
The main hurdle for real-time systems is to supply drivers
with instant data based on object detection. Further, a hard-
ware setup that ensures fast and accurate output is crucial.
In response to these challenges, a state-of-the-art real-time
deep learning configuration has been developed and assessed
that synergizes with embedded systems and a computing
environment, guaranteeing high detection accuracy. Owing
to its remarkable accuracy and speed, this research acts as
a beacon for academics, showcasing the effectiveness of
real-time road object detection, segmentation, and line and
drivable area identification on mobile platforms, all while
consuming minimal power.
Addressing impending challenges, ADAS has become in-
dispensable in the modern automotive industry, significantly
enhancing driver safety and convenience. The successful
deployment of ADAS necessitates the integration of an array
of sensors, complex algorithms, and sophisticated computing
resources. These elements must collaborate to interpret en-
vironmental data and deliver real-time decisions. A solution

that has seen considerable attention in recent years involves
the utilization of MPSoC FPGAs, owing to their capabilities
in parallel computing and reconfigurable logic.
The critical elements of MPSoC FPGAs, namely parallel
computing and pipeline architectures, have the potential to
amplify the performance of ADAS applications significantly.
For instance, the opportunity to create custom hardware
accelerators like DPUs using programmable logic and pro-
cessing engines can enable rapid and low-latency processing
of image and video data. Further advancements in software
frameworks and libraries, such as OpenCV, Python, and
C++, have streamlined the deployment of intricate algorithms
necessary for successful ADAS applications.
Multi-task learning presents another approach to enhance
the efficacy of ADAS systems. This technique trains a sin-
gle model to perform multiple tasks, including object and
lane detection, allowing it to recognize and interpret var-
ied environmental features simultaneously. Nevertheless, this
strategy introduces its challenges, particularly in memory
allocation and management of processing resources.
A potential resolution to these constraints of memory and
resources is the application of quantized aware training.
This approach facilitates the creation of compact and ef-
ficient models, ensuring minimal performance degradation.
Nevertheless, optimizing these quantized models demands a
delicate balance, considering the potential trade-offs between
accuracy, performance, and memory consumption.
While substantial strides have been made in developing
ADAS systems utilizing MPSoC FPGAs and other comput-
ing resources, several hurdles remain. A principal challenge
lies in integrating ADAS with other advanced methods, like
autonomous driving, which demands heightened reliability,
safety, and security. Furthermore, ADAS systems operat-
ing in harsh environments, such as extreme temperatures
or adverse weather conditions, require specialized hardware
and software architectures. To conclude, MPSoC FPGAs,
parallel computing architectures, and software frameworks
like OpenCV and Python provide promising avenues for
developing efficient and high-performance ADAS systems.
However, it is imperative to address the significant challenges
to ensure the widespread adoption and successful deployment
of ADAS across diverse applications.
Our future research is directed towards investigating how
innovative technologies, such as advanced LiDAR or radar
systems, can be incorporated into the multi-task learning
approach of ADAS. We also consider integrating refined
computer vision and machine learning algorithms to en-
hance object detection and tracking accuracy. The thought
of advancing the decision-making process in ADAS using
Vehicle-to-Everything (V2X) data for coordinating activities
across multiple vehicles, thereby augmenting road safety, is
also contemplated. Furthermore, the advent of technologies
like quantum computing and neuromorphic computing may
revolutionize ADAS. These innovative concepts underpin our
future research plans as we investigate these technologies’
potential impacts and integrative possibilities in ADAS sys-

VOLUME 4, 2023 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

tems.

REFERENCES
[1] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional net-

works for large-scale image recognition." arXiv preprint arXiv:1409.1556
2014.

[2] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.

[3] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi:
10.1109/CVPR.2016.90.

[4] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks," in IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-
1149, 1 June 2017, doi: 10.1109/TPAMI.2016.2577031.

[5] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg,
A. C. (2016, October). Ssd: Single shot multibox detector. In European
conference on computer vision (pp. 21-37). Springer, Cham.

[6] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.

[7] H. Noh, S. Hong and B. Han, "Learning Deconvolution Network
for Semantic Segmentation," 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1520-1528, doi:
10.1109/ICCV.2015.178.

[8] V. Badrinarayanan, A. Kendall and R. Cipolla, "SegNet: A Deep Convo-
lutional Encoder-Decoder Architecture for Image Segmentation," in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
12, pp. 2481-2495, 1 Dec. 2017, doi: 10.1109/TPAMI.2016.2644615.

[9] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans and L. V.
Gool, "Towards End-to-End Lane Detection: an Instance Segmentation
Approach," 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu,
China, 2018, pp. 286-291, doi: 10.1109/IVS.2018.8500547.

[10] S. Lee et al., "VPGNet: Vanishing Point Guided Network for Lane and
Road Marking Detection and Recognition," 2017 IEEE International Con-
ference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 1965-1973,
doi: 10.1109/ICCV.2017.215.

[11] Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., & Van
Gool, L. (2017). Fast scene understanding for autonomous driving. arXiv
preprint arXiv:1708.02550.

[12] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla and R. Urtasun, "Multi-
Net: Real-time Joint Semantic Reasoning for Autonomous Driving," 2018
IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 2018, pp.
1013-1020, doi: 10.1109/IVS.2018.8500504.

[13] J. Peng et al., "Multi-task ADAS system on FPGA," 2019 IEEE
International Conference on Artificial Intelligence Circuits and
Systems (AICAS), Hsinchu, Taiwan, 2019, pp. 171-174, doi:
10.1109/AICAS.2019.8771615.

[14] Sanjay Basu, P. D. (2022, August 7). Deep learning part 3/4. Medium. Re-
trieved January 9, 2023, from https://medium.com/my-aiml/deep-learning-
part-3-4-5c1392ecbc17

[15] Jawandhiya, P. (2018). Hardware design for machine learning. Int. J. Artif.
Intell. Appl, 9(1), 63-84.

[16] J. Borrego-Carazo, D. Castells-Rufas, E. Biempica and J. Carrabina,
"Resource-Constrained Machine Learning for ADAS: A Systematic Re-
view," in IEEE Access, vol. 8, pp. 40573-40598, 2020, doi: 10.1109/AC-
CESS.2020.2976513.

[17] K. S. Zaman, M. B. I. Reaz, S. H. Md Ali, A. A. A. Bakar and M. E.
H. Chowdhury, "Custom Hardware Architectures for Deep Learning on
Portable Devices: A Review," in IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 11, pp. 6068-6088, Nov. 2022, doi:
10.1109/TNNLS.2021.3082304.

[18] M. Lebedev and P. Belecky, "A Survey of Open-source Tools for FPGA-
based Inference of Artificial Neural Networks," 2021 Ivannikov Memorial
Workshop (IVMEM), Nizhny Novgorod, Russian Federation, 2021, pp.
50-56, doi: 10.1109/IVMEM53963.2021.00015.

[19] G. Tatar, S. Bayar and I. Cicek, "Hardware Acceleration of FIR Fil-
ter Implementation on ZYNQ SoC," 2022 IEEE 16th International
Conference on Application of Information and Communication Tech-

nologies (AICT), Washington DC, DC, USA, 2022, pp. 1-6, doi:
10.1109/AICT55583.2022.10013522.

[20] G. Tatar, S. Bayar and I. Cicek, "Performance Evaluation of Low-Precision
Quantized LeNet and ConvNet Neural Networks," 2022 International Con-
ference on INnovations in Intelligent SysTems and Applications (INISTA),
Biarritz, France, 2022, pp. 1-6, doi: 10.1109/INISTA55318.2022.9894261.

[21] Vitis AI. (2021). Xilinx. Retrieved November 7, 2022, from https://www
.xilinx.com/products/design-tools/vitis/vitis-ai.html

[22] Rani, M. R., Mustafar, M. Z. C., Ismail, N. H. F., Mansor, M. S. F.,
& Zainuddin, Z. (2021, March). Road peculiarities detection using deep
learning for vehicle vision system. In IOP Conference Series: Materials
Science and Engineering (Vol. 1068, No. 1, p. 012001). IOP Publishing.

[23] Almeida, T., Lourenço, B., & Santos, V. (2020). Road detection based
on simultaneous deep learning approaches. Robotics and Autonomous
Systems, 133, 103605.

[24] A. Hernández et al., "3D-DEEP: 3-Dimensional Deep-learning based on
elevation patterns for road scene interpretation," 2020 IEEE Intelligent
Vehicles Symposium (IV), Las Vegas, NV, USA, 2020, pp. 892-898, doi:
10.1109/IV47402.2020.9304601.

[25] Andrei, M. A., Boiangiu, C. A., Tarbă, N., & Voncilă, M. L. (2022).
Robust lane detection and tracking algorithm for steering assist systems.
Machines, 10(1), 10.

[26] Chen, Y., Xiang, Z., & Du, W. (2022). Improving lane detection with
adaptive homography prediction. The Visual Computer, 1-15.

[27] Ghorbel, A., Ben Amor, N., & Abid, M. (2022). GPGPU-Based Parallel
Computing of Viola and Jones Eyes Detection Algorithm to Drive an
Intelligent Wheelchair. Journal of Signal Processing Systems, 94(12),
1365-1379.

[28] Machura, M., Danilowicz, M., & Kryjak, T. (2022). Embedded Object
Detection with Custom LittleNet, FINN and Vitis AI DCNN Accelerators.
Journal of Low Power Electronics and Applications, 12(2), 30.

[29] Sharma, N., & Garg, R. D. (2022). Cost reduction for advanced driver
assistance systems through hardware downscaling and deep learning.
Systems Engineering, 25(2), 133-143.

[30] E. Güney, C. Bayilmiş and B. Çakan, "An Implementation of Real-Time
Traffic Signs and Road Objects Detection Based on Mobile GPU Plat-
forms," in IEEE Access, vol. 10, pp. 86191-86203, 2022, doi: 10.1109/AC-
CESS.2022.3198954.

[31] H. -Y. Han, Y. -C. Chen, P. -Y. Hsiao and L. -C. Fu, "Using Channel-
Wise Attention for Deep CNN Based Real-Time Semantic Segmentation
With Class-Aware Edge Information," in IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 2, pp. 1041-1051, Feb. 2021, doi:
10.1109/TITS.2019.2962094.

[32] M. A. Farooq, P. Corcoran, C. Rotariu and W. Shariff, "Object Detection
in Thermal Spectrum for Advanced Driver-Assistance Systems (ADAS),"
in IEEE Access, vol. 9, pp. 156465-156481, 2021, doi: 10.1109/AC-
CESS.2021.3129150.

[33] J. Cho, Y. Kim, H. Jung, C. Oh, J. Youn and K. Sohn, "Multi-
Task Self-Supervised Visual Representation Learning for Monocular
Road Segmentation," 2018 IEEE International Conference on Multi-
media and Expo (ICME), San Diego, CA, USA, 2018, pp. 1-6, doi:
10.1109/ICME.2018.8486472.

[34] S. Krishnan et al., "Automatic Domain-Specific SoC Design for Au-
tonomous Unmanned Aerial Vehicles," 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), Chicago, IL, USA,
2022, pp. 300-317, doi: 10.1109/MICRO56248.2022.00033.

[35] C. -Y. Lai, B. -X. Wu, V. M. Shivanna and J. -I. Guo, "MTSAN: Multi-Task
Semantic Attention Network for ADAS Applications," in IEEE Access,
vol. 9, pp. 50700-50714, 2021, doi: 10.1109/ACCESS.2021.3068991.

[36] Gaurav Nakhare. Hardware options for machine/deep learning.
https://mse238blog.stanford.edu/2017/07/gnakhare/ hardware-options-
for-machinedeep-learning/

[37] P. Jawandhiya. Hardware design for machine learning. InternationalJour-
nal of Artificial Intelligence & Applications, 9:63–84, 2018.

[38] Chen, R., Wu, T., Zheng, Y., & Ling, M. (2022). Mlof: Machine learning
accelerators for the low-cost fpga platforms. Applied Sciences, 12(1), 89.

[39] F. Chollet, "Xception: Deep Learning with Depthwise Separable Con-
volutions," 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807, doi:
10.1109/CVPR.2017.195.

[40] Wu, Chen, et al. "Low-precision Floating-point Arithmetic for High-
performance FPGA-based CNN Acceleration." ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 15.1 (2021): 1-21.

20 VOLUME 4, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[41] Véstias, Mário P., et al. "A fast and scalable architecture to run convo-
lutional neural networks in low density FPGAs." Microprocessors and
Microsystems 77 (2020): 103136.

[42] Lei Mao, "Quantization for Neural Networks," https://leimao.github.io/
article/Neural-Networks-Quantization/ (accessed: Feb. 18, 2023).

[43] NOVAC, Pierre-Emmanuel, et al., "Quantization and Deployment of Deep
Neural Networks on Microcontrollers" Sensors 21, 2021. no. 9: 2984.
https://doi.org/10.3390/s21092984

[44] Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propa-
gating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

[45] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., &
Modha, D. S. (2019). Learned step size quantization. arXiv preprint
arXiv:1902.08153.

[46] M. Berman, A. R. Triki and M. B. Blaschko, "The Lovasz-Softmax Loss:
A Tractable Surrogate for the Optimization of the Intersection-Over-Union
Measure in Neural Networks," 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4413-
4421, doi: 10.1109/CVPR.2018.00464.

[47] J. Wang and S. Gu, "FPGA Implementation of Object Detection Accelera-
tor Based on Vitis-AI," 2021 11th International Conference on Information
Science and Technology (ICIST), Chengdu, China, 2021, pp. 571-577, doi:
10.1109/ICIST52614.2021.9440554.

[48] S. Fang et al., "Real-Time Object Detection and Semantic Segmentation
Hardware System with Deep Learning Networks," 2018 International Con-
ference on Field-Programmable Technology (FPT), Naha, Japan, 2018, pp.
389-392, doi: 10.1109/FPT.2018.00081.

[49] A. Kojima and Y. Osawa, "Design and Implementation of Autonomous
Driving Robot Car Using SoC FPGA," 2019 International Conference on
Field-Programmable Technology (ICFPT), Tianjin, China, 2019, pp. 441-
444, doi: 10.1109/ICFPT47387.2019.00088.

[50] Kalapothas, Stavros, Georgios Flamis, and Paris Kitsos. 2022. "Efficient
Edge-AI Application Deployment for FPGAs" Information 13, no. 6: 279.
https://doi.org/10.3390/info13060279.

[51] J. Zhang et al., "Physics-Informed Deep Learning for Musculoskeletal
Modeling: Predicting Muscle Forces and Joint Kinematics From Surface
EMG," in IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 31, pp. 484-493, 2023, doi: 10.1109/TNSRE.2022.3226860.

[52] J. Zhang et al., "Non-iterative and fast deep learning: Multilayer extreme
learning machines," Journal of the Franklin Institute, vol. 357, pp. 8925-
8955, 2020, doi: 10.1016/j.jfranklin.2020.04.033.

GUNER TATAR (M’21) was born in Kahra-
manmaras/Elbistan and completed high school in
2007. In 2009, He enrolled in Marmara University
and spent a year studying English preparation be-
fore graduating from the Electronics and Commu-
nications department in 2014. That same year, He
decided to pursue a master’s degree and was ac-
cepted into Marmara University’s Institute of Pure
and Applied Science in EEE while simultaneously
studying for the second bachelor’s degree in EEE

at Inonu University in Malatya. Following graduation, He worked for a year
as a scholarship student in the development of biomedical imaging and
diagnostic systems infrastructure, which was financially supported by the
Ministry of Development in 2017. From October 2, He has been working
as a Research Assistant in the Department of EEE at Fatih Sultan Mehmet
Vakf University while also pursuing a PhD in EEE (English) at Marmara
University. His main interests are including Reconfigurable Computing,
Dynamic and Partial Reconfiguration of AMD Xilinx FPGA, Multiproces-
sors, Embedded Multicore Architecture, Deep Learning and Driver Assistant
Systems.

SALIH BAYAR received his BS degree in elec-
tronics and communication engineering from
Yıldız Technical University, Istanbul, Turkey, in
2003. He has received his MS degree in Electrical
Engineering and Information Technology in spe-
cialization Systems Engineering from Karlsruhe
Institute of Technology, Karlsruhe, Germany, in
2007. He was a research assistant in the Depart-
ment of Computer Engineering at Bogazici Uni-
versity, Istanbul, Turkey, between 2007 and 2013.

He received his PhD degree from the Department of Computer Engineering
at Bogazici University. He worked as a Research and Development Engineer
and Manager from 2013 to 2017 in a leading software company, Istanbul,
Turkey. Since 2017 he has been an Assistant Professor in the Electrical and
Electronics Department at Marmara University, Istanbul, Turkey. His main
research interests are parallel computing, Machine Learning, Image Process-
ing, FPGAs, multi- processor and embedded multi-core architectures.

VOLUME 4, 2023 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3300379

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

