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ON POWER SERIES SUBSPACES OF CERTAIN NUCLEAR
FRECHET SPACES

NAZLI DOGAN

ABSTRACT. The diametral dimension, A(E), and the approximate di-
ametral dimension, §(E) of an element E of a large class of nuclear
Fréchet spaces are set theoretically between the corresponding invari-
ant of power series spaces Aj(e) and A (¢) for some exponent sequence
e. Aytuna et al., [2], proved that E contains a complemented subspace
which is isomorphic to A (g) provided A(F) = A(Ax(€)) and ¢ is sta-
ble. In this article, we will consider the other extreme case and we proved
that in this large family, there exist nuclear Fréchet spaces, even regular
nuclear Kothe spaces, satisfying A(E) = A(A1(g)) such that there is no
subspace of E which is isomorphic to Aq(e).

1. INTRODUCTION

Fréchet spaces are one of the leading class of locally convex spaces and
include most of the important examples of non-normable locally convex
spaces. Power series spaces constitute a well studied class in the theory of
Fréchet spaces. Subspaces and quotient spaces of a nuclear stable power se-
ries space are characterized by Vogt and Wagner ([15], [17], [18]) in terms of
diametral dimension and DN-2 type linear-topological invariants. The topo-
logical invariants DN and §2 are enjoyed by many natural nuclear Fréchet
spaces appearing in analysis and these invariants play an important role in
this study.

Let EF be a nuclear Fréchet space which satisfies DN and 2. Then it
is a known fact that the diametral dimension A(FE) and the approximate
diametral dimension §(E) of E are set theoretically between corresponding
invariant of power series spaces A(¢) and A (¢) for some specific exponent
sequence €. The sequence ¢ is called associated exponent sequence of E. In
[2], Aytuna et al. proved that a nuclear Fréchet space E with the properties
DN and (2 contains a complemented copy of Ay, (¢) provided the diametral
dimensions of F and A (¢) are equal and ¢ is stable. In this article, we deal

with the other extreme, namely, the main question in this article is:
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Question 1.1. Let F be a nuclear Fréchet space with the properties DN and
Q and € be the associated exponent sequence of E. Is there a (complemented)
subspace of E which is isomorphic to Ay(e) if A(E) = A (A (¢))?

This problem led us to examine the relationship between the diametral
dimension and the other invariants. The most appropriate topological in-
variants for comparison with the diametral dimension is the approximate

diametral dimension. Then, we ask the following question:

Question 1.2. Let E be a nuclear Fréchet space with the properties DN
and Q. If diametral dimension of E coincides with that of a power series
space, then does this imply that the approximate diametral dimension also

do the same and vice versa?

In [5], we showed that Question has an affirmative answer when
power series space is of infinite type. Then we searched an answer for the
Question in the finite type case and, in this regard, we first proved that
the condition 6 (E) = d (A (€)) always implies A (E) = A (A; (¢)). We also
constructed some sufficient conditions to prove the other direction. It turns
out that the existence of a prominent bounded subset in the nuclear Fréchet
space E plays a decisive role for the answer of Question In [5, Theorem
4.8], we proved that § (E) = § (A (¢)) if and only if F has a prominent
bounded set and A (E) = A(A4 (¢)).

In this article, after giving some preliminary materials in Section 2, we
construct a family IC of nuclear Kéthe spaces K(a,,) parametrized by a
sequence « satisfying the properties DN and €). First we show that for an
element of the family of K which is parameterized by a stable sequence
a, A(K(ak,)) = A(Ar(«)) and (K (ak,n)) = 0(A1(w)). Second, we prove
that for any element of the family of I which is parameterized by an un-
stable sequence a, A(K(ax,)) = A(A1(€)) and §(K (axn)) # 6(Ai(e)) for
its associated exponent sequence €. This show that the Question has
a negative answer for power series space of finite type. Furthermore, we
prove in Theorem [4.1] that the first question has a negative answer, that
is, A1(€) is not isomorphic to any subspace of these Kothe spaces K (ay.n),
let alone is isomorphic to a complemented subspace, though the condition
A(K(agy,)) = A(A1(e)) is satisfied. Motivated by our finding in [5], we
compile some additional information, for instance, for any element F of the

family IC parameterized by an unstable sequence,

1. E does not have a prominent bounded set.
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2. Although the equality A(E) = A;(¢e) is satisfied and the canonical
imbedding from A(E) into A;(e) has a closed graph, the canonical
imbedding from A(FE) into A;(e) is not continuous.

2. PRELIMINARIES

In this section, after establishing terminology and notation, we collect
some basic facts and definitions that are needed them in the sequel.
Throughout the article, £ will denote a nuclear Fréchet space with an

increasing sequence of Hilbertian seminorms (||.||,) For a Fréchet space

keN’
E, we will denote the class of all neighborhoods of zero in £ and the class

of all bounded sets in E by U (E) and B (E), respectively. If U and V are
absolutely convex sets of £ and U absorbs V| that is, V' C CU for some
C >0, and L is a subspace of E, then we set;

S(V U L)y=inf{t >0:V CtU+ L}.
The n'* Kolmogorov diameter of V with respect to U is defined as;
d, V,U)=inf {6 (V,U,L) :dimL <n} n=0,1,2,..

Let Uy DU; D --- DU, D --- be a base of neighborhoods of zero of Fréchet
space E. The diametral dimension of F is defined as

A(E) = {(tn)neN VpEN 3g>p lim tyd, (U, Uy) = o} .
Demeulenaere et al. [4] showed that the diametral dimension of a nuclear
Fréchet space can also be represented as

A(F) = {(t”)neN VpeN Jg>p sgg ltn| dn (Uy, Up) < —i—oo} :
The approximate diametral dimension of a Fréchet space E is defined as

5 (E) = {(tn)neN:EIUGLI(E) IBeB(E) lm % :o}.

n—oo d,,

It follows from Proposition 6.6.5 of [II] that for a Fréchet space E with
the base of neighborhoods U; D Uy, D --- D U, D ---, the approximate
diametral dimension can be represented as;
0 (E) =< (t, :IpeNVg>p lim ————=0p.
()= {(t)en s ENT > p I s =0}
The following proposition shows how the diametral dimension and the ap-

proximate diametral dimension passes into subspaces:

Proposition 2.1. Let E be a Fréchet space and F' be a subspace or a qou-
tient of E. Then,
1. A(E) CA(F).
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2.6(F)Co(FE).
Hence the diametral dimension and the approximate diametral dimension

are linear topological invariants.

Proof. |11, Proposition 6.6.7 and Proposition 6.6.25] O

A matrix (agn),, oy Of non-negative numbers is called a Kdthe matriv if
it is satisfies that for each k& € N there exists an n € N with a;, > 0 and

g < @ pt for all k,n € N. For a Kéthe matrix (ak,n)kmeN,

K (akn) = {x = (z,) @ ||z]|,, := Z || ag . < +o00 for all k € N}

n=1
is called a Kdthe space. Every Kothe space is a Fréchet space given by the
semi-norms in its definition. Nuclearity of a Kothe space was characterized

as follows:

Theorem 2.2. /Grothendieck-Pietsch] K (a,) is nuclear Kothe space if and

k

only if for every k € N, there exists a l > k so that Z L < 4o00.
a

n—1 l,n

Proof. |8, Theorem 28.15]. O

Dynin-Mitiagin Theorem [8, Theorem 28.12] states that if a nuclear
Fréchet space E with the sequence of seminorms (||.||,), .y has a Schauder
basis (), then it is canonically isomorphic to a nuclear Kothe space de-
fined by the matrix (|lenll;), ,en- Therefore, it is important to understand
the structure of nuclear Kothe spaces in the theory of nuclear Fréchet spaces.

Terzioglu gave an estimation for n'’-Kolmogorov diameters of a Kéthe
space K (ay,,) by using the matrix (ax )k nen-

Proposition 2.3. Let K(ay,) be a Kithe space and fired n € N. Assume
J C N with |J| =n+1and I C N with |I| < n. Then for every p and
q>Dp,

inf{@:iej} gdn(Uq,Up)gsup{“if;z'gl}.

Qq,i i

Proof. |12 Proposition 1]. O

Definition 2.4. A Kdthe space K(ay,) is called regular if the inequality

A1, Qk+1,n+1 . )
TN < M s satisfied for all k,n € N
akn Ak n+1

Remark 2.5. In the light of the above proposition, we conclude that for any
reqular Kithe space K (a,,), the n'"-Kolmogorov diameter is d,, (U,, U,) =

apn ,
—pntl If, on the other hand, K (a,,) is not regular, then, one can find
Agqn+1
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Ap,n

Kolmogorov diameters by rewriting the sequence < ) with terms in a
neN

Qg,n
descending order so that the n'-Kolmogorov diameter of K (a,.,,) is nothing

but the n + 1 — th term of this descending sequence.

Power series spaces are the most important family of Kothe spaces and
they have a significant role in this work, for a comprehensive survey see [13].
Let a = (an),,cy be @ non-negative increasing sequence with lim o, = +o0.

n—o0

A power series space of finite type is defined by

s 1
Ay (@) = {93 = (@n)pen 2l = Z |2, e kM < 400 for all k € N}

n=1

and a power series space of infinite type is defined by

Ao (@) = {:c = (@n)pens < 2l = D |2a] €5 <t for all k € N} .

n=1

The nuclearity of a power series space of finite type A; (o) and of infinite

In(n In
type A (o) are equivalent to the conditions lim (n) = 0 and sup (n) <
n—oo0 Qi neN  Op

~+00, respectively.

Definition 2.6. An ezponent sequence v is called finitely nuclear if Ai(a)

18 nuclear.

Diametral dimension and approximate diametral dimension of power series
spaces are A (A; (@) = Ay (a), A (A (@) = As (@), 6 (A () = Ay (@)
and 0§ (Aw (@) = A (a) for details see [3] and [9).

An exponent sequence « is called

Qop
stable if sup 2 < ~+00,
neN Op
. Q41
weakly-stable if  sup < 400,
neN Op
(679
unstable if lim 0.

n—00

It follows that « is stable, respectively weakly-stable, if and only if £ =2
E x E, respectively, £ 2 FE x K where £ = A.(«) for r =1 or r = oo, for
proofs see [6].

Subspaces and quotient spaces of a nuclear stable power series space
are characterized by Vogt and Wagner ([15],[17], [I8]) in terms of diame-
tral dimension and DN-(2 type linear-topological invariants. The topological
invariants DN and €2 are enjoyed by many natural nuclear Fréchet spaces
appearing in analysis and these invariants play an important role in this

study:.
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Definition 2.7. A Fréchet space (E, ||.||,)ken is said to have the property:
(DN) 3k V35 31, C>0,0<A<1

A 1-X
lzll; < € Nl lll; Vel

Q) Vp dqVk I3C>0,0<7<1
* *1—0 *0 ’
yll; < Cllylls " lyll; VyekE

where |ly|l, == sup {|y ()| : [|z]|, <1} € RU{+o0} is the gauge functional
of the polar Uy for U, ={x € E : ||z||, <1}.

In [16], D. Vogt characterized 2 for Kéthe spaces in terms of Kéthe matrix
as follows:

Proposition 2.8. A Kdthe space K (ay.,) has the property 2 if and only if
the condition
Vp IgVk 3j>0, C>0 (apn) agpm < C (agn) ! vneN

18 satisfied.

Proof. |16l Proposition 5.3|. O

By using the technique in [16, 5. 1 Proposition|, one can easily obtain
the following:

Proposition 2.9. A Kdthe space K (ay,) has the property DN if and only
if the condition

Ipo Vp 3¢ F30<A<L, C>0  apn < Clapn) (agn)™" VneN
18 satisfied.

Now we give the important result which gives a relation between the
diametral dimension/approximate diametral dimension of a nuclear Fréchet
spaces with the properties DN, Q) and that of a power series spaces A; (g)

and A (¢) for some special exponent sequence e.

Proposition 2.10. Let E be a nuclear Fréchet space with the properties
DN and ). There exists an exponent sequence (unique up to equivalence)

e = (&) satisfying:

(2.1) A (A () € A(B) C A (Aw (0)).

Furthermore, Ay (o) C A (E) implies Ay (o) € Ay () and A(E) C A/ («)
implies A () C A._ ().
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Proof. |2, Proposition 1.1]. O

Definition 2.11. Let E be a nuclear Fréchet space with the properties DN
and Q. The sequence & (unique up to equivalence) in the above proposition
is called the associated exponent sequence of E in [|2].

We note that A, () is always nuclear provided £ is nuclear, but it may
happen that A;(¢) is not nuclear. For example, if we take the space of rapidly
decreasing sequence s = Ay (In(n)), the associated exponent sequence of s
is (In(n))neny and A1(In(n)) is not nuclear.

In the proof of the above proposition, Aytuna et al. showed that there
exists an exponent sequence (unique up to equivalence) (g,) such that for
each p € N and ¢ > p, there exist C,Cy > 0 and ay, as > 0 satisfying

Cre~Mn < d, (U, U,) < Cye ®25n

for all n € N. From this inequality, one can easily obtain
0 (Moo (€)) SO (E) S O(A1(e)).

For a nuclear Fréchet space E with the properties DN and €2 and the
associated exponent sequence ¢, concidence of the diametral dimension of £
with that of power series spaces defined by e form two extreme cases. The
extreme case A(F) = A (Ax(€)) gives an information about a (comple-
mented) subspace of a nuclear Fréchet space E with the properties DN and
() and stable associated exponent sequence ¢. In [2], Aytuna et al. proved
that a nuclear Fréchet space E with the properties DN and () contains a
complemented copy of A (g) provided that A(E) = A(Ax(e)) and € is
stable.

Theorem 2.12. Let E be a nuclear Fréchet space with the properties DN
and Q and stable associated exponent sequence €. If A(E) = A (A (€)),

then E has complemented subspace which is isomorphic to Ay ().

Proof. |2, Theorem 1.2]. O

On the other hand, there is no information for the other extreme A(E) =
A (Aq(g)). This leads to ask the Question [T in Introduction. We need the
following proposition characterizing coincidence of 6(E) with 6(A;(¢)) given
by A. Aytuna in [1]:

Proposition 2.13. Let E be a nuclear Fréchet space E with the properties
DN, Q and associated exponent sequence €. Then

d(E)=0(A(g)) & inf sup lim sup En \P

P ¢>p neN €n
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where €, (p,q) = —logd, (U,, U,).

Proof. |1l Corollary 1.10] O

3. K., SPACES

In this section, we will construct a family of nuclear Kéthe spaces with the
properties DN and €2 and parameterized by a finitely nuclear sequence a and
show that a subfamily of these Kothe spaces satisfied that A (K (ax,)) =
A (A () and 6 (K (akn)) # 6 (A1 (¢)) for its associated exponent sequence
. This shows that Question has a negative answer.

We proceed as follows: First, we divide natural numbers N into infinite
disjoint union of infinite subsets. For this purpose, we order the elements of

N? by matching them with the elements of N such that any element (z,y) €

@+lﬂz+2y+wx+1y+2@;izeN

One can visualize this ordering as shown in the following diagram:

N2 corresponds to the element

~

As shown in the above diagram, each vertical line 5 has infinitely many

elements and N can be expressed as an infinite disjoint union of I, that is,

N:Ug

Definition 3.1. Let o = (a),cn
nuclear sequence. We define a matriz (axn),, oy by setting:
(1

e k an, if k<s

be a strictly increasing, positive, finitely

(3.1) An = 4

1
(—— + 1) oy,
e\ Kk if k>s+1.
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wheren € Ig, s € N,

Infact, (akm)k,neN is a K&the matrix, since for every n,k € N, 0 < ay,, <
ag+1.n- We denote the Kothe space generated by a matrix (akﬂ)k,neN as in
B by K. We say that the space I, is parameterized by the sequence «.
We denote the family of all Kéthe space K, by K. Now, we show that each
element of the family K is nuclear and satisfies the properties DN and €

Lemma 3.2. Let K, be an element of the family K parametrized by o =
(an)pen- Then, Ko is nuclear and has the properties DN and €.

(o]
a
Proof. For the nuclearity of IC,, we show that the series E —Fn s con-

Ak+1,n
n=1

1, 1
< e( BT k+1) U for every k,n € N

Ak+1,n
00

Ak.n

vergent for each k € N. Since

Qg .
—"_is convergent. By Theorem

and Aq(«) is nuclear, then the series E
Ak+1,n

n=1

2.2l K, is nuclear, as asserted.
We now prove that &, has the DN property by using Proposition
We will show that for all p € N there exists a 0 < A < 1 such that the

inequality

(32) Qpn S (a'l,n)A (a'p-i-l,n)

is satisfied for all n € N. Let p,n € N and assume n € I, s € N. There
are two cases for p and s: p < s or p > s. First we assume that p < s: In

1-A

1
: _ ——« —— =«
this case, a1, = e~ *, a,, =e P " and ay41, > e Pt ", Then, the
11

inequality [3.2]is satisfied for any A < pipirl. Second we assume that s < p:
- pFL
_1 1
In this case, a1, = e 9n Qppn = e< PH)Q” and apq1, = e< p+l +1>a". But
r_ 1
then the inequality is satisfied for any A\ < pipirl.
~ pFl

Hence, if we choose
a A > 0 satisfying

11 1 1 11

. +1 +1 +1
)\<m1n p p p p :p p
172 1

N S
p+1

P+l p+1
then inequality holds in general and so K, has the property DN, as
claimed.

We now prove that K, has €2 by using Proposition 2.8 We will show
that for all p € N and k& > p there exists a j > 0 such the inequality

(3.3) (ap,n)j A < (ap-lrlm)jJrl



10 N. DOGAN

is satisfied for all n € N. Let p,n € N and assume n € I, s € N. There are

two case for p and s: p < s or p > s. First we assume that p < s: In this
1

1
—a ——— — <41
case, Gpp =€ P ', apr1, > e PP and ag,, < e< k ) " for all k£ > p.

1 1
L1
Then, the inequality is satisfied for any j > %. Second we
p ptl

1 1
. —41) ——
assume that s < p: In this case, a,, = e< P ) " i, = e< p+1

_1
and ag, = e< B+1)on for all k > p. Therefore, the inequality [3.3is satisfied

+1)ozn

I S §
for any j > Ti i . Now, we choose a j > 0 satisfying
p  ptl
1 1 1 1 1 1
= —z+1 == —= ———7+1
1k 1k 1k
]>max< T_ 1 ’l_L>_ T 1
p  pt+l p  ptl p  ptl
and so that the inequality is satisfied for all n € N. Hence K, has the
property €2, as claimed. U

Remark 3.3. It is worth noting that any element IC,, of the family IC does
not have the property (ds),

. QAkn @]
(do) : Vk 35 Vi sup ——= < +00.
n (ajn)
1 1
, ] _ —Z 1)
Since forallj € N,n € Ij, a1, =€~ aj, =e J ",aj+1,n=€< A ) "
Ginljpin  Hia, 10 Qjt1m 10 Qjg1m
— o = el Ut and SUp —— 5" = SUp ———>" = +00
(a']n) nte (a]n) neN (a']n)

then IC,, does not have the property (ds). So the family IKC does not contain
a power series space of finite type.
3.1. Kolmogorov diameters of an element K, of the family K.

In this subsection, we calculate Kolmogorov diameters of an element /C,,
of the family K. In order to determine n*’-Kolmogorov diameter of a Kothe

Apn

space IC,, we will rewrite the sequence ( ) in descending order. We
neN

(g,n
know from Remark that the n'"-Kolmogorov diameter of the space K,

is the n + 1""-term of this descending sequence.
Let K, be an element of the family X parameterized by an exponent
sequence «. Let us take a p, a ¢ > p and an n € I, s € N. Then, we can

write
Cpg ozn’

e s>qors<p

apn

Q
el e s <y
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1 1
where ¢, is the negative number —— + —. We define the set I = U I
p 1 p<s<q
with the elements (n;);eny ordered increasingly, namely, n; < n;y; for all

t € N. We also denote the index of the element of I, on the line with the
equation * +vy = q+ k — 2 by s, for each k£ = 0,1, 2, ..., as seen from the
following diagram. Since every a line with the equation z +y = ¢+ k — 2
has ¢ — p elements of I, then s(; 4 1) — s = ¢ — p for every £ =0,1,2, ...

.
N i
Y ° LR
oSkl B4
° -
. nsy °
L e
. ° KR \\\
> l’lsl N
. I ~ T the line with the equation
Uso| .
. . e, e r+y=q+k—1
- ° « w - o . . .
: . the line with the equation
N \\\ N2 i \\\ \\\ \\\
NN S ~ % r+y=q+k—-2
NN N K
° . 24 » . ° °
I, | Y

Now we assume that the terms e“ra ®m m € N—1, are on the blue points
and the terms e(cpq —1) An; n, € I, are on the red points at this line. Before

Apn

sorting the terms of the sequence , we note that the terms of the

Gg,n neN

and (e(cpq - 1) O‘”z‘) have decreasing order in

sequences (ecpq am)
ieN

meN—-T
themselves.

a
At first, we take into account the part of (ﬂ) including the first
Agn neN

n; — 1 terms e(cpq -1 @n; 1 < i< n—1. Since « is increasing, this part
has decreasing order and all terms in this part is greater than the terms
corresponding to the elements of I. Then, having decreasing order, this
part remains the same. However, we write this part by shifting to the left

taking into account the zero indices for Kolmogorov diameter.
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a
p?n
€Cpa A1 H ¢Cpg X2 efra ¥ny — 1 H e(cpq —1) ap,
Qg,n
dn(Uy, Up) | eCpa @1 | | ¢Cpq X2 era®ny —1 H
dO d1 dnl -2 dm -1

So, for every 0 <n < n; — 2,
dn(U,,U,) = ePan+1,
In order to find the diameter d,,, — 1(Ug, Up), we will compare the term

e(cpq —Dap, with the terms e“re®n m € N— I, m > n;, and the greatest

term gives the diameter d,,, — 1(U,, Up):

e(cpq — Danp, < epa®m RN am < Apg o,
where A,; = 1+ % Then, the terms ePe®m m € N — I, m > ny,
satisfying o, < Apgap, is greater than the term e(cpq —Dan,, So we
must write the terms et ¥m m € N— I, m > nq, satisfying a,, < Apg an,
before the term e(CPq — Dan, in decreasing order.

We call the greatest element m € N — [ satisfying oy, < Apgap, as iy.
As shown in the following diagram, we can assume that there exists a k; > 0
so that the inequality

nsp. <1 < ns(kl +1)
holds.

| L

ny nang NgN5Ne 41 S (ky 4+ 1)
1

nskl

This means that the number of elements of I which is less than 4; is
S(k, +1) — 1. 50, before the term e(Cpg = 1)am, , we will write il—[s(k,l T
1] many e“a ¥m m € N—I, m < iy, terms in decreasing order. Furthermore,
while writing these terms in decreasing order, every term e(cpq o 1)O‘”a,
1<a< Sk +1) — 1 shifts to the right and every term era®m m e N— T,
m < 11, shifts to the left, as shown in Diagram 1.



Upn

g n

ngkl

l

[ —— fime s —— f{mafms el ——1
~ ~ \
~ \\ \\ \\ \\ \

\
\

o~
A

NRRNEEN
D N G

Diagram 1

€1 SHOVAS LUHDJYHA UVHTONN NIVIHID A0 SHDVISINS SHIHHAS HIMOd NO
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In order to find n; — 1-th Kolmogorov diameter, we shift the term cor-
responding to the first element n; of I. Considering also that we shift the
terms to the left for dy(U,, U,), we find that for every ny —1 <n <ny —3,

dn(U,, U,) = ePan+2,

So, we found the Kolmogorov diameters until the indices no, — 2. Now, we
also shift the terms corresponding to the element ny and n3 of I. Up till
now, we shift the terms to the left four-indices, then we find that for every
ng—2<n<ngs—>5

dn(U,, Uy) = epan+4,

We would like to point out that the endpoints of the intervals in which we
determine Kolmogorov diameters are generally represented by the elements
of I,. Because the terms corresponding to the elements of I that we shift
to the right and the terms corresponding to the elements of N — [ that we
shift to the left are between the two elements of I,,, as seen in the following

diagram.
sy, Sk + 1)
_

<
)

Another significant point in writing the endpoints of the intervals in which
we determine the diameters are to find out how many elements, the terms
corresponding to the elements of I, we shift to the right.

We continue to calculate the diameters with this perspective. Let us
assume that we replaced ng, — [sy + 1] terms in decreasing order. In order
to find n g, — so-th Kolmogorov diameter, we shift s; terms corresponding to

the elements of I in total, for every ng, — 5o < n < ng, — [s1 + 1], we have
dn(Uyg, Up) = epan t 1,

Considering the terms that we shift to the right in each step, we can write

for every 0 < k < k; and for every ng; — s <n < NS(p 1)~ [Sg+1) +1]
dn (Ufh U;D) = €Cpq n+ S(k +1)

and for all nsy — Sk SN < 1= Sk +1)
dn (Ufh Up) = ecpqan " S(kl + 1) .

Therefore, we shift i, — [S(kl 1) —1] many terms era ¥m m € N—I,m < i,

to left, namely, we sort all terms which is greater than e<cpf1 - 1)O‘”l. Hence,
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the term e(CPq — Dap, is replaced at the indices g1 = i1 — S(ky +1) +1,
namely,

d; (U, U,) = elcpa = Dany

J1

Now assume that the first a — 1, (a > 2) terms corresponding to the ele-
ments of I are placed in decreasing order. Before the term e(cpq - 1)0‘%, we
must write the terms ers ¥m m & N—T which is greater than e(cpq -1 Qng
satisfying the inequality o, < Ay, ap, We call the greatest element of
m € N satisfying oy, < Apgap, as iq. We can assume that there exists a

kq € N so that
nsp. < lg < ns(ka+1).

This means that the number of elements of I which is less than ¢, is
S(kq + 1) — L. S0, before the term e{Cpa — 1)0‘%, we write iq — (S (g, + 1) — 1)
many e?e¥m m € N — I, m < i, terms in decreasing order. Since we as-
sume that the first a — 1 terms corresponding to the elements of I is placed
in decreasing order, then the term e(cpq — Dan, are replaced at the indices
Ja ="1q — S(kq+1) ~ 1+ a, namely,

dj,

(U,,U,) = e(cpq - 1)ana,
Now, we determine Kolmogorov diameters between the indices j, and

Ja+1) for every a > 1. Starting the index j,, we must compare the term

e(cpq — Dan, +1 with the terms ¢ ®m m € N—1T and for every m € N—T

satisfying am < Apgan,  ;, we write the terms era®m before the term

e(cpq —an, +1. Again, we call the largest element of N— I satisfying above
inequality as ia + 1) for which there is k( a+1) € N satisfying

sy <Ua+1) <"S(/~s<a+1)+1)'

(a+1)
Let us continue to decreasing order from j, + 1:

Forallja+1§n§n5(ka+1)—s(ka+1)+a—1

dy (U, Uy) = e P77 T S(ka +1) =@

If any, for every kg +1 <k < k(aJrl) — 1 and for every
nsk—sk+a§n§n5(k+l> —s(k+1)+a—1

d, (U, U,) = e P19 T8k 41) — 4

and for every nsk(aJrl) — Sk(a—l—l) tasn<igqn) _S<k(a+1) +1)ta

Cpq On, 4+ _
4 (U, O) = Bary+DTE
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We sort all terms which is greater than e(cpq —Lan, +1. Then, the term

e(cpq —Dang 4 is replaced at the indices

j(a+ 1) = i(a+ 1) — S(k’(a+1) +1) + a + 1, namely,

(Cpg — Dan 1
gy 1y (U Uh) =€ o
Hence, we determine all Kolmogorov diameters between the terms e(cpq —1an,

Cpy — 1
(g )an(a+ 1) for every a > 1.

and e
Therefore, we can calculate all Kolmogorov diameters by following the
above observation, and finally we can write:

1.LetJ::{ja:aeN}Whereja:ia—s(kaJrl)—1+a.F0ralla€N,

dja(Uqa Up) = 6<Cpq - 1)0471@.

2. For a,k € N, we define

I 1= [nsk—sk+a,n5(k+1) —s(k+1)+a—1]

and

K= ] U Lk
For every n € K, there is an a € N and a k € N satisfying k, +1 < k <
k(a4 1) — 1 such that

dy (Ug, Up) = ecpqan T+ 4

3. Let L= |J[ja+1, " Sk +1) 5 (kg + 1)T@ — 1] For every n € L,
aeN
there is an a € N such that

d, (U,, U,) = PN Sy 1) T O

4. Let M = U [nska — Sk, T a—1,j4 — 1|. For every n € M, there is an

aeN
a € N such that

dn (Uy,U,) = St s,y 1y~ (@=1) |

All Kolmogorov diameters in the light of above observation are found
since N=1{0,1,...,n; — 2}UJUKULUM. This completes the determination
of the diameters.

Now, we give an estimation for Kolmogorov diameters of an element /C,

of the family K which is parameterized by a.
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Theorem 3.4. Let K, be an element of the family KC with the parameter
a. For every p, q > p there exists a N € N such that

(3.4) erain < d,(U,,U,) < e“ra®n
for everyn > N.

Proof. Let p € N and ¢ > p. Above we obtained Kolmogorov diameters
d,(U,, Up) on each subsets {0,1,...,n; — 1}, J, K, L and M of N. We will
show that the inequality [B.4] holds for sufficiently large elements of each
subsets J, K, L, and M of N.

Primarily, we will show that 27, > i, for sufficiently large a € N. We
know that for every i, there exists a k, € N satisfying ng hy < ig <
S (kg + 1) Since NSk, is on the line which has the equation z+y = g+kq,—2,

the first element of I, 4 j, _ 9 is less than nsp, We can write

(+ka—2)(g+ka—1) (q—2)(q—1) ka (ko —1)
nsg, 2 : =D g - ke
o ko (ko — 1)
Since hrf kq = 400, we can assume that 1 > (kg +1) (¢ —p)
a——+00
(¢ —1)ka . .
and 5 > s for sufficiently large a € N. Hence we can write
lg nsg
5 25 2sot(kat1)(¢=p) =50, +1)
and we find
ja:Za_S(ka+1)+a>Za_5a:Ea = 2ja>/la.

Now, we will show that the inequality [3.4] is satisfied for a sufficiently
large element of J. Let take an a € N satisfiying 2j, > i4. We know that
iq is the greatest element of m € N — I satisfying (g = D an, < oCng Qm
then we can write

eCpa ¥k e(cpq —1ap,

for every k > iq, k € N— 1. If 25, € N— I, then

1 Yja < 1 ¥2ja < e(cpq - 1)O‘na,
If 2j, € I, then 2j, + (¢ —p) € N—1T and 2j, + (¢ — p) < 4j, is satisfied
for a sufficiently large a and we find

1 Yja < Cpa¥2jq +(¢—p) < e(cpq - 1)ana,
Also, we know that i, > j, for every a € N, thus we can write

d

ja(qu U,) = e(cpq — Dan, < efraia < 1Y,
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The above inequalites give us that
eCra®4ja < dja(Uq, U, = e(cpq —1ap, < €ra Yja,

Then, the inequality [3.4 is satisfied for sufficiently large element of .J.
We now prove that the inequality [3.4] is satisfied for sufficiently large
elements of K, L and M. In order to see this, we first show that

for sufficently large & € N. We know that ns, is on the line which has
equation x +y = ¢+ k — 2 for every k = 0,1.... Since the first element of

Iy 4+ k, — 2 1s less than ng; , then we can write

q
ns, > (q+k—2)2(Q+k—1) _ (q—2)2(q—1)+(q_1)l“r

k(k—1)
—

The inequalities
k.(k—1)

4
hold for a sufficiently large k. Then we find

>k(q—p) and (¢q—1)k>2(so+1)

nsy = 2(s0 + k(g —p) +1) =25y,

for a sufficiently large k& € N.

Now we show that the inequality B.4] is satisfied for sufficiently large
element of K. Let take an n € K. Then, there exist aa € Nand a k € N
satisfying ko + 1 < k < k(aJrl) — 1 such that ns, — S ta < n <
ns(k:Jrl) —S(k+1) +a—1 and

d, (U,,U,) = PN sy —a

Since ng; > 25y, for a sufficiently large k € N and S(k+1)—Sk=4q—P for
all £ € N, we can write

Sp<ns, —sptasn = n+Sgiq)—as2n
for sufficiently large a. Then, we obtain

dy (U, U,) = eP1OMFS041) =0 5 (CgO2n > (Cpg@in
and always we have

d. (Uq, Up) _ 6CpqOén +Sk+1)—0 < ¢Cpa Otn

since « is increasing. Therefore, the inequality [3.4] is satisfied for sufficiently
large elemets of K.

Now, we will show that the inequality B.4] is satisfied for a sufficiently
large element of L. Let us take a n € L. Then, there is an a € N such that

ja+1§n§n5(ka+1)—s(k(L+1)+a—1



ON POWER SERIES SUBSPACES OF CERTAIN NUCLEAR FRECHET SPACES 19

and

d, (U, U,) = e PN E S (k1) T

Since sy, Snska =Sk, ta<ja+1 §nandn+s<ka+1) —a < 2n for a
sufficiently large n, then we find

Cpg O _
Pq n+S(ka+1) aZeCPqQQHZeCan4”,

d, (U, U, =e
and always we have
d, (U, U,) = e PIM S (hy +1) T4 < (Cpgin
since « is increasing. Therefore, the inequality 3.4l is satisfied for sufficiently
large element of L.

Now we will show that the inequality 3.4 is satisfied for a sufficiently
large element of M. If n € M, then there is an a € N

nska—s(ka+1)+a§n§ja—1

and

Cpg X _ B
dn(Uq,Up):epq Nt Sk, +1) (a 1)‘

Again we can write Sky < NS, ~ Skq +a <nand nsp, +8p,—a+1<2n
for a sufficiently large a. Hence we find

Cpg O o
d, (U, U,) = P+ s, 4 1) — (@—1) > a2 > ¢Cpg¥dn
and always we have
Cpg O i
Ay (U Up) = e " " 50 = (0 1) < ipgam

since « is increasing. Therefore, the inequality [B.4] is satisfied for a suffi-
ciently large element of M. This completes the proof. O

3.2. The diametral dimension and the approximate diametral di-
mension of an element of the family K parameterized by a se-
quence «.

As a consequence of Theorem [B.4, we will compute the diametral di-
mension and the approximate diametral dimension of an element IC, of the
family K which is parameterized by a stable sequence a.

Corollary 3.5. Let IC,, be an element of the family IC which is parameterized
by a stable sequence av. Then, A(K,) = A(Ay () and 6(Ky) = 0(Aq (o).
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Proof. From Theorem [3.4] we have

A(A(an)) € A(Ka) € A(As(adn))
and

(Ar(aun)) € 6(Ka) € 0(As(an)).

On the other hand, Aj(ay) = Aj(ayy) since « is stable. Then A(K,)
A(A; (o)) and §(Ky) = §(A1 (an)).

Ol

Now we will prove that A(KC,) = A (Ay (a4 1)) and 0(KCo) # 0 (Ay (a +1))
for an element K, of the family K which is parameterized by an unstable
sequence . Besides, we will show that all regular elements of the family IC

are parameterized by an unstable sequence a.

Proposition 3.6. Let K, be an element of the family IC which is parame-
terized by an unstable sequence ov. Then, A(Ky) = A(A1 (o +1))-

Proof. We can calculate Kolmogorov diameters as in the previous deter-
mined for every p and ¢ > p. Since a is unstable, then there exists an
ap € N such that for all a > ag, there is no m > ng,, m € N satisfy-
ing oy, < Apgap,. Now, we examine closely the indices replaced the term

6(Cpq N 1)an‘10. We know that

d; U, U, = e(cpq a l)an(ao -1

J(ag — 1)(
where jq 1) = i(qy — 1)~ (ap — 1) T — 2. Since Vi (4~ 1) < Ay g — 1)
and there is no m > ng, satisfying o, < Ay Ang, s then we find i(ao <

Nna,- This gives that for all j(ao ~1) <n <ng, —2,
d,(U,, U,) = eCra®n + 1.

. . a .
Besides, we obtain that the sequence (ﬂ) has decreasing order start-
neN

Gg,n
ing from the indices Jag—1)+ 1, since for every a > ag, there is no n > ng,

satisfying ap < Apqan,. Then, we have for all a > ag
dn, 1 (U Up) = elra = Dng
and for allij(ao_l), meN-—T
dny (Ug, Up) = ePa@m+1,

Since d,(U,,U,) < ePa@¥n+1 for every n € N, then we find A(K,) 2
A(Ay (o 4+ 1))
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For the other direction, let us take a sequence (z,,),,cy € A(Kq), ane > 0

1
and a p € N satisfying — < . We will show that
p

sup |z, e E¥n+1 < foo.
neN

Since (), € A(Ka), there exist a ¢ > p and M; > 0 satisfying
sup |z,| dn, (Up, U,) < M;.
neN

Let us define I = U Is. For sufficiently large n € N — I, we can write
p<s<q

|$A€_€a”+1§|%Jdna@i%):e%¢%HJfgﬂﬁ

since ¢,, > —¢. Therefore, the sequence |z,|e €% +1 is bounded on the
set N — I. If we show that |z,|]e €% +1 is also bounded on I, then we
will find that (2,),cy € A(Ay (o +1)). Let take another py > ¢, then there
exist a ¢o and M, > 0 such that

sup |z, | d, (qu, Upo) < M.

neN

Let us define J = U I,. Since Cpo, g = —€, We find
Po < 5 <qo

|xn| e—é?Oén+ 1 S |In| dn (Uqu Upo) = QCPOaQOan+ 1 S M2

for sufficently large n +1 € N — J. Also, it is easy to see that I C N — J.
Then, the above inequalities give us that

|zn| e O +1 < M.

for all n € I. Hence, the sequence |r,|e €% +1 is also bounded on I.
Therefore, we find

sup |z, e E¥n+1 < oo
neN

and (2y,),cny € A(A1 (a4 1)). This says that A(K,) = A(Ay (o, 1)) O

Proposition 3.7. Let K, be an element of the family IC which is parame-
terized by an unstable sequence av. Then, §(Ko) # 0(A1 (an +1))-

Proof. In the proof of the previous proposition, we show that if « is unstable,
then for all p € N and ¢ > p, there is a ag € N such that for all a > ag

dn, Uy, Uy) = el = Dng,

so the last equality holds except for finitely many numbers of elements of

I. Then we have
€ng — 1 (D5 4)

=1-—c
an P,q

a
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and
8 — ) . . 8 9
lim sup M =1—-cy, = inf sup lim sup M > 0.
a€N Qng P g neN OQp41
By Proposition 2.13] we have § (K,) # 0 (A1 (o +1))- O

Remark 3.8. Proposition[3.80 and Proposition[371 shows that Question[1.2
has a negative answer for the elements of the family IKC which is parametrized

by an unstable exponent sequence.

Now, we will show that all regular elements of the family K are param-
eterized by an unstable sequence a.

Let K, be an element of the family K parameterized by an exponent
sequence o and n € Ig, s € N. Then, there exist two cases for n + 1:
n+lelgyyorn+1el.

We assume n + 1 € I 4 1: For this case, n + 1 >

HD6+2) o oy
5 >

1
i - — a
i) Fork +1 < s, wehaveay , =e k‘a”,akJan:e 1T ay 4 =

—= — S« : - .
e kOntl g 41p41 =€ kil n+1 Since a is increasing, the
inequality

1 1 1 1
Ak +1,n :€<kk+1>0‘n < €<k,€+1>0‘n+1 _ %k +1n+1
Ak n Ak n+1
holds in this case.

1
,, (1o ()
ii) Fork > s+ 1, we haveay, , = e k Ak 41,0 =€ k+1

1
o B
ak7n+1:e< k ;g 41n41 =€ ktl 1 Since a is

Y

increasing, the inequality

1 1 ) <1 1 )
a T Al T 727 )%+l a
k—i—l,n:e(k E+1 <e E k41 _ E+1,n+1

Ak n Ak n+1

holds in this case. .
(ot
iii) For k=5, we have aj, = e k""" ap;1, = e\ P+l ,

1
_1 ——« .
A p+1=€ ka”+1,ak+17n+1:e k+1°7+1 Then, these give
that

1 1 1 1
Zktln :e(E_’fHH)a” Zk+lntl :e(E_k;H)a”H'
Ak n Afon+1
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Ak 4+1,n < Ak +1,n+1

In this case, the regularity condition < is equiv-
Ak n Afon+1
alent to the following inequality:
(3.5) (I+k(k+1)ap <apt1 Vnel,, keN

The similiar observation can be given by following the same step for the

case n+1 € I;. Then, we have a regularity condition for a Kéthe space K,:

Proposition 3.9. Let K, be an element of the family IC parameterized by
the sequence a. Then, IC, is reqular if and only if the inequality

(14 (5 + 1)) an < s 1
1s satisfied for alln € Is and s € N.

n—1
We also note that the sequence (o), cy = ( H (1+i(i+ 1))) satisfies
i=0 neN
the condition of Proposition since
(67
= (L n(n 1) 2 (14 s(s + 1))
n

for all n € I, s € N.
As a consequence of Proposition 8.9 we obtain the following result:

Corollary 3.10. Let IC, be an element of the family K parameterized by
the sequence a. If IC,, is reqular, then the sequence « is unstable.

Proof. Let KC,, be a regular Kéthe space generated by the matrix (ag »)knen

. . . . . On +1
given in BI] and assume « is not unstable, that is, lim — %+ +o00.
n—00 Qi

Then, there exist a M > 0 and a non-decreasing sequence (ny),cy SO that

Qg +1 . . . .
sup ——— < M. Since (ny), oy is non-decrasing and K, is regular, we can
keN ank
write

Q41 < Qny +1
Oék ank
for all £ € N and from Proposition 3.9, we find that

(1+s(s+1)) < HEL <y
(673

<M

for all k € Is, s € N. This is a contradiction, therefore e must be unstable,
as desired. O

Remark 3.11. Being unstable is not sufficient for reqularity of Kéthe space

Kao. For instance, the sequence (o), oy = (M!),cn does not satisfy the con-

s(s+1)

dition of Proposition[3.9. Indeed, for every s € N, n = € ls and

1
an+1:n+1:1+5(8+ )
o 2

<1+s(s+1).
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Remark 3.12. As a corollary of Proposition[3.0, Proposition[371 and Corol-
lary[3.10, we can obtain that A(K,) = A(A1 (a4 1)) and §(Ky) # 0(A1 (o +1))
for a regular element KC,, of the family IC which is parameterized by an ex-

ponent sequence «.

4. SOME RESULTS OBTAINED WITH THE FAMILY K

In this section, we compile some additional information for the family .
We have shown that an element IC, of the family K which is parametrized
by an unstable sequence « constitutes a counterexample to Question An
element K, of the family I which is parametrized by an unstable sequence

a is crucial for Question [LL1 as well:

Theorem 4.1. There exists a nuclear Fréchet space E with the properties
DN and 2 satisfying A(E) = A(A1(g)), forits associated exponent sequence
g, with the property that there is no subspace of E which is isomorphic to

Al(E).

Proof. Let IC,, be an element of the family I which is parametrized by an
unstable sequence a. We proved that A(K,) = A(Ai(an+1)) in Propo-
sition Therefore, the sequence (ay, 4 1),y is the associated exponent
sequence of K,. Assume that there exists a subspace of K, which is iso-
morphic to Aj(ay, +1). This gives us that 6(A;(ay 1)) C 6(K) by Propo-
sition 211 Since always 6(K,) C d(A1(a, +1)), we conclude that 6(K,) =
d(A1(an +1)). But this is a contradiction since we showed that 6(KC,) #
d(A1 (a4 1)) in Proposition 371 Hence, there is no subspace of IC,, which is
isomorphic to Aj(ay, +1). O

Remark 4.2. The above theorem indicates that Question[I1 has a negative
answer. It is worth mentioning that we can find even a nuclear reqular Kdthe

space with the properties listed in Theorem [{.1].

In [5], we gave conditions confirming an affirmative answer for Question
L2l First result was related to the topology on diametral dimension of a

nuclear Fréchet space. The diametral dimension
A(E) ={(ta)yen 1Y €N 3q > p lim tud, (U, Uy) = 0}

= m UA(quUp>

peEN ¢>p
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is the projective limit of inductive limits of Banach spaces A (U, U,) with
the norm |[|(¢,), | = sup |t,|d.(U,, Up). Hence A(E) is a topological vec-
neN

tor space with respect to that topology which will be called the canonical
topology.

Theorem 4.3. Let E be a nuclear Fréchet space with properties DN and §2
and € = (&,),en be the associated exponent sequence of K. If A (E), with
the canonical topology, is barrelled, then A (E) = A (Ay(¢)) if and only if
0 (E) =0 (A1 ().

Proof. |5, Theorem 4.2] O
Therefore, we obtain the following:

Proposition 4.4. Let K, be an element of the family KC parameterized by
an unstable sequence . Then A(KC,), with the canonical topology, is neither

barrelled nor ultrabornological.

We actually wanted the barrelledness in [5, Theorem 4.2| to be able to
use a closed graph type theorem, [7, Theorem 5, Pg. 40] which says that a
linear map f from a barrelled space X into a Fréchet space Y is continuous
provided that the graph of fis closed in X x Y. Since 6(KCy) # §(A1(an +1))
and A(KC,) = A(A1(ap + 1)), the technique used in the proof of [5, Theorem
4.2| is not valid for an element K, of the family K parameterized by an
unstable sequence «. Hence, this gives us that the identity mapping from
A(K,) into Aj(ay, + 1) is not continuous although it has a closed graph:

Theorem 4.5. Let K, be an element of the family K parameterized by
an unstable sequence a. Then A(K,) = A(A1(an + 1)) and the identity map
from A(K,,) into Ai(ay, 4 1) s not continuous although it has a closed graph.

In [14], T. Terzioglu defined the notion prominent bounded subset in order
to show that the diametral dimension of some Fréchet spaces is determined

by a single bounded set:

Definition 4.6. Let E be a Fréchet space. A bounded set B is said to
prominent if

A(E) = { (Tn) pen - lirf zpd, (B,U,) =0 Vp} )

The existence of a prominent bounded subset in the nuclear Fréchet

space E plays a decisive role for the affirmative answer of Question [I.2l
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Theorem 4.7. Let E be a nuclear Fréchet space with the properties DN and
Q and e the associated exponent sequence. § (E) = § (Ay (¢)) if and only if
E has a prominent bounded set and A (E) = A (¢).

Proof. |5, Theorem 4.8] O

Obviously, this condition is not valid for an element C, of the fam-
ily IC which is parameterized by an unstable sequence « since A(K,) =

A(A(ap 1) and 6(Ka) # 0(A(en 41))-

Theorem 4.8. There exists a nuclear Fréchet space E with the properties
DN and 2 satisfying A(E) = A(Ay(g)) forits associated exponent sequence
€ such that there is no prominent bounded set of E.

Remark 4.9. It is worth to note that as a consequence of Theorem [{.7]
and Corollary[3.3, an element K, of the family IC parameterized by a stable
sequence o has a prominent bounded subset.

A nuclear Fréchet space E with an increasing sequence of seminorms
([-Il) gey 18 called tame if there exists an increasing function o : N — N,
such that for every continuous linear operator 7' : E — FE there exists a
ng € N and C' > 0 so that

1T (@), < Cllllory Vzelk.

In [1I, Theorem 2.3|, A. Aytuna proved that a nuclear Fréchet space E
with the properties DN and () and stable associated exponent sequence e
is isomorphic to a power series space of finite type if and only if F is tame
and d(F) = §(A1(¢)). As a consequence of this result and Remark .9 we
have the following:

Proposition 4.10. Let K, be an element of the family KC parameterized by
a stable sequence o. Then, I, is not tame.
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