• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance Improvement in Photosensitive Organic Field Effect Transistor by Using Multi-Layer Structure

Thumbnail

View/Open

Ana Makale (2.882Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2019

Author

Kösemen, Zühal Alpaslan
Kösemen, Arif
Öztürk, Sadullah
Canımkubey, Betül
Erkovan, Mustafa
Yerli, Yusuf

Metadata

Show full item record

Citation

KÖSEMEN, Zühal Alpaslan, Arif KÖSEMEN, Sadullah ÖZTÜRK, Betül CANIMKURBEY, Mustafa ERKOVAN & Yusuf YERLİ. "Performance Improvement in Photosensitive Organic Field Effect Transistor by Using Multi-Layer Structure". Thin Solid Films, 672 (2019): 90-99.

Abstract

In this study, a new approach was introduced for Photo-OFETs as a multi-layer structure. Poly(3-hexylthiophene- 2,5-diyl) regioregular (P3HT) and Copper(II) phthalocyanine (CuPc) thin films were used as two different active photo-absorber layers in the same device structure. Poly(methyl methacrylate) (PMMA) was used as a dielectric layer and all devices were fabricated with a top-gate bottom-contact configuration. In order to investigate the effect of the location of each layer on the Photoresponsive organic field-effect transistors (Photo-OFET) performance, five different devices in various structures were produced and analyzed. Surface properties of active layers have been investigated via Atomic Force Microscopy (AFM) and effects of surface roughness on device performance have been discussed. P3HT/CuPc/P3HT multi-layered structure exhibited the best performance in terms of photoresposivity(as 45 mA/W) and photosensitivity (~ 2×103). Photo-OFET based on a multi-layer structure demonstrated superior performance with wider absorbance spectrum region compared to conventional single component devices of P3HT or CuPc. The proposed multi-layer structure can be a model to improve the realization of high performance Photo-OFETs.

Source

Thin Solid Films

Volume

672

URI

https://hdl.handle.net/11352/3428

Collections

  • Biyomedikal Mühendisliği Bölümü [106]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.