• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust University Course Timetabling Problem Subject to Single and Multiple Disruptions

Thumbnail

View/Open

Ana Makale (1.205Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2020

Author

Gülcü, Ayla
Akkan, Can

Metadata

Show full item record

Citation

GÜLCÜ, Ayla & Can AKKAN. "Robust University Course Timetabling Problem Subject to Single and Multiple Disruptions". European Journal of Operation Research, 283.2 (2020): 630-646.

Abstract

University course timetables are often finalized in stages, in between which, changes in the data make the earlier version infeasible. As each version is announced to the community, it is desirable to have a robust initial timetable, i.e. one that can be repaired with limited number of changes and yielding a new solution whose quality is degraded as little as possible. We define two versions of the robust timetabling problem, first one assuming that only one lecture is disrupted (its scheduled period ceasing to be fea- sible) and the second one assuming multiple lectures are disrupted. The objective of the algorithms is to identify a good Pareto front defined by the solution quality (penalty associated with soft-constraint violations) and the robustness measure. Two versions of a multi-objective simulated annealing (MOSA) algorithm is developed (MOSA-SD and MOSA-SAA, for single and multiple disruptions, respectively), with the difference being in the way robustness of a solution is estimated within the MOSA algorithm. Exten- sive computational experiments done using the International Timetabling Competition ITC-2007 data set confirm that MOSA-SD outperforms a genetic algorithm from the literature, and MOSA-SAA outperforms MOSA-SD when there are multiple disruptions. For MOSA-SAA an innovative solution network to struc- ture feasible solutions for a set of disruption scenarios has been developed to efficiently perform sample average approximation (SAA) calculations, which can be adopted for other stochastic combinatorial opti- mization problems.

Source

European Journal of Operation Research

Volume

283

Issue

2

URI

https://hdl.handle.net/11352/3467

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.