• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bi-criteria Simulated Annealing for the Curriculum-based Course Timetabling Problem With Robustness Approximation

Thumbnail

View/Open

Ana Makale (888.5Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2022

Author

Akkan, Can
Gülcü, Ayla
Kuş, Zeki

Metadata

Show full item record

Citation

AKKAN Can, Ayla GÜLCÜ & Zeki KUŞ. "Bi-criteria Simulated Annealing for the Curriculum-based Course Timetabling Problem With Robustness Approximation", Journal of Scheduling, (2022).

Abstract

In the process of developing a university’s weekly course timetable, changes in the data, such as the available time periods of professors or rooms, render the timetable infeasible, requiring the administrators to repair or update the timetable. Since such changes almost always occur, it would be a sensible approach to identify a robust initial timetable, that is, one that can be repaired by making a limited number of changes, while still maintaining a high solution quality. This article formulates the problem as a bi-criteria optimization one, in which robustness is a stochastic objective, and the goal is to identify a good approximation to the Pareto frontier. It is assumed that multiple data changes, or disruptions, of multiple types can occur. The solution approach is a multi-objective simulated annealing (MOSA) algorithm, where a surrogate measure is used to approximate the robustness objective. Inspired by the concept of slack in machine and project scheduling, ten alternative measures of slack and a total of thirty surrogate measures are defined. Preliminary computational experiments are used to narrow the list of promising ones first to eight and then to two measures, which are then tested within a MOSA algorithm. Computational experiments show that one of these measures, when implemented in a multi-start MOSA algorithm, consistently provides the best Pareto frontier.

Source

Journal of Scheduling

URI

https://hdl.handle.net/11352/4081

Collections

  • Bilgisayar Mühendisliği Bölümü [198]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.