• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of Drag Finish Post-processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing

Thumbnail

View/Open

Ana Makale (2.543Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2022

Author

Güneşsu, Emrah
Yılmaz, Mustafa Safa
Taşçıoğlu, Emre
Sharif, Safian
Kaynak, Yusuf

Metadata

Show full item record

Citation

GÜNEŞSU, Emrah, Mustafa Safa YILMAZ, Emre TAŞÇIOĞLU, Safian SHARİF & Yusuf KAYNAK. "Effect of Drag Finish Post-processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing". Journal of Materials Engineering and Performance, (2022).

Abstract

The Additive Manufacturing (AM) process provides opportunities to fabricate products with complex geometries including conformal cooling channels, etc. While having such an advantage, the low surface quality of the products is a disadvantage of laser powder bed fusion (LPBF). Because of that, a post-process is needed to improve the surface quality. Drag Finish (DF) is a surface enhancing operation based on removing small amounts of sawdust from the workpiece that is in contact with abrasive media. This study presents the effect of the drag finish post-processing parameters on wear and surface features of additively manufactured Ti-6Al-4V samples. Processing parameters considered are abrasive media, processing duration, and speed. This study reveals that the surface roughness of as-built specimens can be reduced up to 94% by implementing appropriate process parameters during post-processing operations. Drag finish also results in work hardening on the surface of the specimen and hence increased hardness of the treated surface by 6%. This eventually helps to improve the wear resistance of additively fabricated specimens.

Source

Journal of Materials Engineering and Performance

URI

https://hdl.handle.net/11352/4131

Collections

  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM) [118]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.