• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fast Algorithm for Hunting State-Backed Twitter Trolls

Thumbnail

View/Open

Kitap Bölümü (1.924Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2022

Author

Sahmoud, Shaaban
Abdellatif, Abdelrahman
Ragheb, Youssof

Metadata

Show full item record

Citation

SAHMOUD, Shaaban, Abdelrahman ABDELLATIF & Youssof RAGHEB. "A Fast Algorithm for Hunting State-Backed Twitter Trolls". Pervasive Computing and Social Networking, (2022): 643–657.

Abstract

In recent years, state-backed troll accounts have been adopted extensively by many political parties, organizations, and governments to negatively influence political systems, persecute perceived opponents, and exacerbate divisiveness within societies. Thus, the need for an automatic state-backed troll classification system has increased. Various algorithms have been proposed in the literature to handle this problem, but a majority of them consider all types of trolls as one type which decreases the performance of classification algorithms. Our goal in this paper is to design a thorough method for detecting state-backed trolls on Twitter with the ability to work efficiently in any case regardless of the language, the location, and the purpose of the troll account. For accurate classification, a set of novel effective and powerful features from various categories are proposed. To train our algorithm, we gathered a large and relevant dataset from Twitter. The results show that the proposed algorithm achieves high classification accuracy (approximately 99%) and has the ability to classify state-backed troll accounts regardless of the language or the location of the account.

Source

Pervasive Computing and Social Networking

URI

https://hdl.handle.net/11352/4178

Collections

  • Bilgisayar Mühendisliği Bölümü [198]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.