• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic Multi-Objective Evolutionary Algorithms in Noisy Environments

Thumbnail

View/Open

Ana makale (2.130Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2023

Author

Sahmoud, Shaaban
Topcuoğlu, Haluk Rahmi

Metadata

Show full item record

Citation

SAHMOUD, Shaaban & Haluk Rahmi TOPCUOĞLU. "Dynamic Multi-Objective Evolutionary Algorithms in Noisy Environments". Information Sciences, 634 (2023): 650-664.

Abstract

Real-world multi-objective optimization problems encounter different types of uncertainty that may affect the quality of solutions. One common type is the stochastic noise that contaminates the objective functions. Another type of uncertainty is the different forms of dynamism including changes in the objective functions. Although related work in the literature targets only a single type, in this paper, we study Dynamic Multi-objective Optimization problems (DMOPs) contaminated with stochastic noises by dealing with the two types of uncertainty simultaneously. In such problems, handling uncertainty becomes a critical issue since the evolutionary process should be able to distinguish between changes that come from noise and real environmental changes that resulted from different forms of dynamism. To study both noisy and dynamic environments, we propose a flexible mechanism to incorporate noise into the DMOPs. Two novel techniques called Multi-Sensor Detection Mechanism (MSD) and Welford-Based Detection Mechanism (WBD) are proposed to differentiate between real change points and noise points. The proposed techniques are incorporated into a set of Dynamic Multi-objective Evolutionary Algorithms (DMOEAs) to analyze their impact. Our empirical study reveals the effectiveness of the proposed techniques for isolating noise from real dynamic changes and diminishing the noise effect on performance.

Source

Information Sciences

Volume

634

URI

https://hdl.handle.net/11352/4525

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.