• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Efficient Lung Sound Classification Technique Based on MFCC and HDMR

Thumbnail

Göster/Aç

Ana makale (1.030Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2023

Yazar

Arar, Mahmud Esad
Sedef, Herman

Üst veri

Tüm öğe kaydını göster

Künye

ARAR, Mahmud Esad & Herman SEDEF. "An Efficient Lung Sound Classification Technique Based on MFCC and HDMR". Signal, Image and Video Processing, (2023): 1-10.

Özet

In this work, an efficient feature extraction scheme is developed for classifying the pulmonary diseases. The proposed method is hybrid which combines two important techniques that are Mel Frequency Cepstral Coefficients (MFCC) and High-Dimensional Model Representation (HDMR). MFCC is capable of imitating the human ear; therefore, it is capable of characterizing the lung sounds acquired by a stethoscope. On the other hand, HDMR performs decorrelation and denoising to the high-dimensional data. The MFCC entries establish a two-dimensional feature matrix, which is decomposed in terms of less dimensional entities by the application of HDMR. These entities are considered feature vectors that are then fed to the relevant machine learning classification algorithms and then the overall accuracies are calculated. According to the results, the proposed algorithm achieves 97.2% classification accuracy which is competitive with other existing state-of-theart methods in the literature. HDMR also improves significantly the classification efficiency of the proposed technique. The results emphasize that HDMR can be employed as an efficient method in recognizing pulmonary disease tasks.

Kaynak

Signal, Image and Video Processing

Bağlantı

https://hdl.handle.net/11352/4630

Koleksiyonlar

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.