• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid Material Usage in TPMS Forms Fabricated by Additive Manufacturing, Comparison of Mechanical Strength of Lattices Produced With Alsi10mg and 7050

Thumbnail

View/Open

Ana Makale (9.704Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2023

Author

Çalışkan, Cemal İrfan
Khan, Hamaid Mahmood
Ural, Mehmet Moğoltay

Metadata

Show full item record

Citation

ÇALIŞKAN, Cemal İrfan, Hamaid Mahmood KHAN & Mehmet MOĞOLTAY URAL."Hybrid Material Usage in TPMS Forms Fabricated by Additive Manufacturing, Comparison of Mechanical Strength of Lattices Produced With Alsi10mg and 7050". Materials Today Communications, 36.106872, (2023)

Abstract

Aluminum-based cellular structures are gaining significant attention across industries due to their lightweight and impressive mechanical properties. With the advent of additive manufacturing (AM), complex periodic cellular structures with varying unit cell forms, sizes, and volume fractions can be fabricated with relative ease. In this study, the mechanical strength of lattice structures fabricated using laser powder bed fusion (LPBF) was investigated, with a focus on the effect of lattice geometry, material type, and outer wall incorporation. Results showed that both material choice and lattice geometry significantly impacted the mechanical properties of the structures. The highest ultimate strength of 400 MPa was observed in the schwartz-p geometry model created with Al 7050 LPBF alloy, with the addition of Zr identified as the key factor in enhancing its strength. The incorporation of an outer wall did not improve the strength of the structures, indicating the importance of material and geometry selection in optimizing mechanical performance. These findings provide valuable insights for the development and advancement of lattice structures in various applications and highlight the potential of additive manufacturing in this field.

Source

Materials Today Communications

Volume

36

Issue

106872

URI

https://hdl.handle.net/11352/4645

Collections

  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM) [131]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.