• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning With Class-Level Abstract Syntax Tree and Code Histories for Detecting Code Modification Requirements

Thumbnail

View/Open

Ana Makale (1.813Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2023

Author

Büyük, O.O.
Nizam, Ali

Metadata

Show full item record

Citation

BÜYÜK, O.O. & Ali NİZAM."Deep Learning With Class-Level Abstract Syntax Tree and Code Histories for Detecting Code Modification Requirements". Journal of Systems and Software, 206. (2023).

Abstract

Improving code quality is one of the most significant issues in the software industry. Deep learning is an emerging area of research for detecting code smells and addressing refactoring requirements. The aim of this study is to develop a deep learning-based system for code modification analysis to predict the locations and types of code modifications, while significantly reducing the need for manual labeling. We created an experimental dataset by collecting historical code data from opensource project repositories on the Internet. We introduce a novel class-level abstract syntax tree-based code embedding method for code analysis. A recurrent neural network was employed to effectively identify code modification requirements. Our system achieves an average accuracy of approximately 83% across different repositories and 86% for the entire dataset. These findings indicate that our system provides higher performance than the method-based and text-based code embedding approaches. In addition, we performed a comparative analysis with a static code analysis tool to justify the readiness of the proposed model for deployment. The correlation coefficient between the outputs demonstrates a significant correlation of 67%. Consequently, this research highlights that the deep learning-based analysis of code histories empowers software teams in identifying potential code modification requirements.

Source

Journal of Systems and Software

Issue

206

URI

https://hdl.handle.net/11352/4656

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.