• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Differential Evolution-Based Neural Architecture Search for Brain Vessel Segmentation

Thumbnail

View/Open

Ana Makale (1.868Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Kuş, Zeki
Kiraz, Berna
Göksu, Tuğçe Koçak
Aydın, Musa
Özkan, Esra
Vural, Atay
Kiraz, Alper
Can, Burhanettin

Metadata

Show full item record

Citation

KUŞ, Zeki, Berna KİRAZ, Tuğçe Koçak GÖKSU, Musa AYDIN, Esra ÖZKAN, Atay VURAL, Alper KİRAZ & Burhanettin CAN. "Differential evolution-based neural architecture search for brain vessel segmentation". Engineering Science and Technology, an International Journal, 46 (2024): 1-13.

Abstract

Brain vasculature analysis is critical in developing novel treatment targets for neurodegenerative diseases. Such an accurate analysis cannot be performed manually but requires a semi-automated or fully-automated approach. Deep learning methods have recently proven indispensable for the automated segmentation and analysis of medical images. However, optimizing a deep learning network architecture is another challenge. Manually selecting deep learning network architectures and tuning their hyper-parameters requires a lot of expertise and effort. To solve this problem, neural architecture search (NAS) approaches that explore more efficient network architectures with high segmentation performance have been proposed in the literature. This study introduces differential evolution-based NAS approaches in which a novel search space is proposed for brain vessel segmentation. We select two architectures that are frequently used for medical image segmentation, i.e. U-Net and Attention U-Net, as baselines for NAS optimizations. The conventional differential evolution and the opposition-based differential evolution with novel search space are employed as search methods in NAS. Furthermore, we perform ablation studies and evaluate the effects of specific loss functions, model pruning, threshold selection and generalization performance on the proposed models. The experiments are conducted on two datasets providing 335 single-channel 8-bit gray-scale images. These datasets are a public volumetric cerebrovascular system dataset (vesseINN) and our own dataset called KUVESG. The proposed NAS approaches, namely UNAS-Net and Attention UNAS-Net architectures, yield better segmentation performance in terms of different segmentation metrics. More specifically, UNAS-Net with differential evolution reveals high dice score/sensitivity values of 79.57/81.48, respectively. Moreover, they provide shorter inference times by a factor of 9.15 than the baseline methods.

Source

Engineering Science and Technology, an International Journal

Volume

46

URI

https://www.sciencedirect.com/science/article/pii/S2215098623001805
https://hdl.handle.net/11352/4719

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.