• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithm

Thumbnail

View/Open

Ana Makale (2.285Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2024

Author

Arasteh, Bahman
Golshan, Sahar
Shami, Shlva
Kiani, Farzad

Metadata

Show full item record

Citation

ARASTEH, Bahman, Sahar GOLSHAN, Shiva SHAMI & Farzad KIANI. "Sahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithm". Journal of Electronic Testing, (2024): 1-15.

Abstract

Software is playing a growing role in many safety-critical applications, and software systems dependability is a major concern. Predicting faulty modules of software before the testing phase is one method for enhancing software reliability. The ability to predict and identify the faulty modules of software can lower software testing costs. Machine learning algorithms can be used to solve software fault prediction problem. Identifying the faulty modules of software with the maximum accuracy, precision, and performance are the main objectives of this study. A hybrid method combining the autoencoder and the K-means algorithm is utilized in this paper to develop a software fault predictor. The autoencoder algorithm, as a preprocessor, is used to select the effective attributes of the training dataset and consequently to reduce its size. Using an autoencoder with the K-means clustering method results in lower clustering error and time. Tests conducted on the standard NASA PROMIS data sets demonstrate that by removing the inefficient elements from the training data set, the proposed fault predictor has increased accuracy (96%) and precision (93%). The recall criteria provided by the proposed method is about 87%. Also, reducing the time necessary to create the software fault predictor is the other merit of this study.

Source

Journal of Electronic Testing

URI

https://hdl.handle.net/11352/4889

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.