• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Comparative Study of Release Kinetics Behavior Models and Shelf Life Assessment of Bacitracin Zinc-Loaded Pla Composites

Thumbnail

View/Open

Ana Makale (970.0Kb)

Access

info:eu-repo/semantics/openAccess

Date

2023

Author

Özarslan, Ali Can
Çiftçi, Fatih

Metadata

Show full item record

Citation

ÖZARSLAN, Ali Can & Fatih ÇİFTÇİ. " A Comparative Study of Release Kinetics Behavior Models and Shelf Life Assessment of Bacitracin Zinc-Loaded Pla Composites". Konya Journal of Engineering Sciences, 11.4 (2023): 1006-1015.

Abstract

Mathematical modeling aims to simplify the complex process of drug release and to gain knowledge about the release mechanisms specific to a given material system. Consequently, a mathematical model focuses primarily on one or two important factors. Drug release aims to maximize the bioactivity of both naturally derived and synthetically derived macromolecules, thus increasing their clinical applicability and improving the overall quality of life. This study focused on fabricating PLA composites with different weight percentages of Bacitracin Zinc (0.5, 1.0, and 2.0) and evaluating their potential as a drug delivery system. To understand the release mechanism of Bacitracin Zinc from the PLA composites, we developed a Franz diffusion kinetic model and a mathematical model for cumulative release kinetics. The Franz diffusion model was utilized to analyze the release behavior of the PLA/Bacitracin Zinc composite structure. The results indicated a sustained release rate, following a Zero Order release kinetics pattern. Furthermore, the shelf life of the composite structure was determined to be 125 days. Python programming was employed to model the release behavior and estimate the shelf life of Bacitracin Zinc (0.5, 1.0, and 2.0) incorporated into the PLA matrix to compare different weight percentages' behavior and shelf life.

Source

Konya Journal of Engineering Sciences

Volume

11

Issue

4

URI

https://dergipark.org.tr/en/pub/konjes/issue/81121/1328688
https://hdl.handle.net/11352/4913

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • TR-Dizin İndeksli Yayınlar / TR-Dizin Indexed Publications [672]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.