• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bio-Electric-Electronics and Tissue Engineering Applications of MXenes Wearable Materials: A Review

Thumbnail

View/Open

Ana Makale (1.170Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2024

Author

Gürbüz, Berfin
Çiftçi, Fatih

Metadata

Show full item record

Citation

GÜRBÜZ, Berfin & Fatih ÇİFTÇİ. "Bio-Electric-Electronics and Tissue Engineering Applications of MXenes Wearable Materials: A Review". Chemical Engineering Journal, 489 (2024): 1-28.

Abstract

In the realm of bioelectronics, MXenes exhibit remarkable conductivity and compatibility with biological systems, making them pivotal in the development of neural interfaces and biosensors. Their efficient signal transduction capabilities contribute to precise monitoring of physiological processes, enhancing the field’s diagnostic and therapeutic potential. MXenes also play a crucial role in tissue engineering, where their unique combination of mechanical strength and biocompatibility contributes to scaffold materials that promote cell adhesion, proliferation, and differentiation. This aspect holds promise for advancing regenerative medicine by facilitating the creation of biomimetic tissue constructs. Furthermore, MXenes find applications in electrical devices, demonstrating superior performance in energy storage solutions, electrocatalysis, and electronic components. Their use in supercapacitors and batteries enhances energy storage efficiency, addressing critical challenges in renewable energy systems. In wearable technology, MXenes contribute to flexible and conductive materials, enabling the integration of advanced components into wearable devices. This includes applications in smart textiles, biosensors, and electronic skin, exemplifying the versatility of MXenes in shaping the future of wearable materials. In conclusion, this review underscores the multifaceted nature of MXenes and their transformative impact on bioelectronics, tissue engineering, electrical applications, and wearable materials, positioning them as key players in the forefront of interdisciplinary research and technological innovation.

Source

Chemical Engineering Journal

Volume

489

URI

https://hdl.handle.net/11352/4923

Collections

  • Biyomedikal Mühendisliği Bölümü [106]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.