• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEG Verilerinden CEEMD Algoritması Kullanılarak Epileptik Nöbetlerin Tespiti

Thumbnail

View/Open

Konferans Öğesi (608.4Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2024

Author

Başpınar, Ulvi
Yol, Şeyma
Aydın, Müberra
Gülhan, Rezzan
Us, Zeynep

Metadata

Show full item record

Citation

BAŞPINAR, Ulvi, Şeyma YOL, Müberra AYDIN, Rezzan GÜLHAN & Zeynep US. "EEG Verilerinden CEEMD Algoritması Kullanılarak Epileptik Nöbetlerin Tespiti". 32nd Signal Processing and Communications Applications Conference, (2024): 1-4.

Abstract

Epilepsi, beynin ani elektriksel deşarjları ile karakterize edilen Dünya Sağlık Örgütü'ne göre inmeden sonra en yaygın ikinci nörolojik bozukluktur. Absans epilepsi ise sık görülen epilepsi türlerinden biridir ve büyük ölçüde elektroensefalogram (EEG) sinyallerinde jeneralize diken ve dalga deşarjların tespitine dayanır. Elektroensefalografi, beynin farklı fizyolojik durumlarına ilişkin bilgiler içeren, beyin faaliyetlerini değerlendirmek amacıyla kullanılan yaygın bir ölçüm tekniğidir. Bu çalışmada Complete Ensemble Empirical Mode Decomposition tekniği kullanılarak ayrıştırılan EEG sinyal segmentlerinden çeşitli istatistiksel özellikler çıkarılmış ve makine öğrenim teknikleri kullanılarak nöbet sınıflandırması yapılmıştır. Önerilen algoritmanın etkinliği performans metrikleri ile doğrulanmış ve geleneksel çalışmalara kıyasla umut verici bir başarı göstermiştir.
 
Epilepsy is the second most common neurological disorder characterized by sudden electrical discharges of the brain after stroke according to the World Health Organization. Absence epilepsy is one of the most common types of epilepsy and is majorly based on the detection of generalised spike and wave discharges in Electroencephalogram (EEG) signals. Electroencephalography is a common measurement technique used to assess brain activity, containing information about different physiological states of the brain. In this study, various statistical features are extracted from EEG signal segments decomposed using the Complete Ensemble Mode Decomposition technique and seizure classification is performed using machine learning techniques. The effectiveness of the proposed algorithm is validated with performance metrics and shows promising success compared to traditional studies.
 

Source

32nd Signal Processing and Communications Applications Conference

URI

https://hdl.handle.net/11352/4973

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.