• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

L2D2: A Novel LSTM Model for Multi-Class Intrusion Detection Systems in the Era of IoMT

Thumbnail

View/Open

Ana Makale (1.437Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Akar, Gökhan
Sahmoud, Shaaban
Onat, Mustafa
Çavuşoğlu, Ünal
Malondo, Emmanuel

Metadata

Show full item record

Citation

AKAR, Gökhan, Shaaban SAHMOUD, Mustafa ONAT, Ünal ÇAVUŞOĞLU & Mmanuel MALONDO. "L2D2: A Novel LSTM Model for Multi-Class Intrusion Detection Systems in the Era of IoMT." IEEE Access, 17 (2025): 7002-7013.

Abstract

The rapid growth of IoT has significantly changed modern technology by allowing devices, systems, and services to connect easily across different areas. Due to the growing popularity of Internet of Things (IoT) devices, attackers focus more and more on finding new methods, ways, and vulnerabilities to penetrate IoT networks. Although IoT devices are utilized across a wide range of domains, the Internet of Medical Things (IoMT) holds particular significance due to the sensitive and critical nature of medical information. Consequently, the security of these devices must be treated as a paramount concern within the IoT landscape. In this paper, we propose a novel approach for detecting various intrusion attacks targeting Internet of Medical Things (IoMT) devices, utilizing an enhanced version of the LSTM deep learning algorithm. To evaluate and compare the proposed algorithm with other methods, we used the CICIoMT2024 dataset, which encompasses various types of equipment and corresponding attacks. The results demonstrate that the proposed novel approach achieved an accuracy of 98% for 19 classes, which is remarkably high for classifications and presents a significant and promising outcome for IoMT environments.

Source

IEEE Access

Volume

13

URI

https://ieeexplore.ieee.org/document/10830526
https://hdl.handle.net/11352/5167

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.