• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AI-Powered Prediction of Dental Space Maintainer Needs Using X-Ray Imaging: A CNN-Based Approach for Pediatric Dentistry

Thumbnail

View/Open

Ana Makale (3.029Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Yelkenci, Aslıhan
Polat, Günseli Güven
Öncü, Emir
Çiftçi, Fatih

Metadata

Show full item record

Citation

YELKENCİ, Aslıhan, Günseli Güven POLAT, Emir ÖNCÜ & Fatih ÇİFTÇİ. "AI-Powered Prediction of Dental Space Maintainer Needs Using X-Ray Imaging: A CNN-Based Approach for Pediatric Dentistry". Applied Sciences, 15.7 (2025): 1-16.

Abstract

Space maintainers (SMs) are essential for preserving dental arch integrity after premature tooth loss. This study aimed to develop a deep learning model to predict the necessity of SMs and identify specific teeth requiring intervention. A dataset of 400 dental X-rays was preprocessed to standardize image dimensions and convert them into numerical representations for machine learning. The dataset was divided into training (80%) and testing (20%) subsets. A Convolutional Neural Network (CNN) was designed with multiple convolutional and pooling layers, followed by fully connected layers for binary classification. The model was trained using 30 epochs and evaluated with accuracy, precision, recall, F1-score, ROC AUC, and MCC. The CNN achieved 94% accuracy, with a precision of 0.93 for Class 0 (no SM needed) and 0.95 for Class 1 (SM needed). The ROC AUC was 0.94, and the MCC was 0.875, indicating strong reliability. When tested on 86 X-ray images, the model successfully identified specific teeth (showing teeth number) requiring SMs, with minimal errors. These results suggest that the proposed AI model provides high-performance predictions for SM necessity, offering a valuable decision-support tool for pediatric dentistry.

Source

Applied Sciences

Volume

15

Issue

7

URI

https://www.mdpi.com/2076-3417/15/7/3920
https://hdl.handle.net/11352/5282

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.