• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fake News Detection on Social Media Data using Community Notes with Machine Learning

Thumbnail

View/Open

Konferans Öğesi (426.4Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Bozkuş, Mehmetcan
Arıcı, Elifnaz
Zeybek, Sultan

Metadata

Show full item record

Citation

BOZKUŞ, Mehmetcan, Elifnaz ARICI & Sultan ZEYBEK. "Fake News Detection on Social Media Data using Community Notes with Machine Learning". 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), (2025): 1-6.

Abstract

The spread of misinformation on digital platforms has become a critical issue that requires the development of effective detection mechanisms. This study explores the use of machine learning techniques to classify fake and real news using data sourced from Platform X and the Disinformation Combat Center (DMM). The data set consists of approximately 7,000 fake and 17,000 real news samples, which are processed through data cleaning, labeling, and transformation techniques such as TFIDF vectorization. Various classification models, including Naive Bayes, Random Forest, Support Vector Machine (SVM), and Logistic Regression, are employed to evaluate the effectiveness of different approaches. The study further examines the impact of class balance on model performance, comparing results from balanced and imbalanced datasets. The findings contribute to ongoing research on misinformation detection by providing insight into the most effective methodologies for automated fake news classification.

Source

2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS)

URI

https://hdl.handle.net/11352/5581

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Yapay Zeka ve Veri Mühendisliği Bölümü [13]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.