• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Yapay Zeka ve Veri Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Yapay Zeka ve Veri Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Derin Öğrenme ve Makine Öğrenmesi Yöntemleri ile Sosyal Medya Verilerinden Suç Tespiti

Thumbnail

View/Open

Ana Makale (1.138Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Zeybek, Sultan
Alkın, Berat
Kaya, Yusuf

Metadata

Show full item record

Citation

ZEYBEK, Sultan, Berat ALKIN & Yusuf KAYA. "Derin Öğrenme ve Makine Öğrenmesi Yöntemleri ile Sosyal Medya Verilerinden Suç Tespiti". Nigde Omer Halisdemir University Journal of Engineering Sciences, 14.1 (2025): 175-182.

Abstract

Bu çalışmada, Türkçe sosyal medya paylaşımlarındaki tehdit ve hakaret içeriklerinin tespiti amaçlanmıştır. Doğal Dil İşleme teknikleri kullanılarak sosyal medya verileri üzerinde derin öğrenme algoritmalarıyla modeller geliştirilmiş ve bu modeller makine öğrenmesi algoritmaları ile karşılaştırılmıştır. Türkçe sosyal medya verilerinden toplanan veri kümesi etiketlenerek Uzun Kısa Süreli Bellek ve BERT derin öğrenme modelleri ile suç tespiti amacıyla kullanılmıştır. Derin öğrenme modelleri, makine öğrenmesi modellerinden Destek Vektör Makineleri, Rastgele Orman ve Gradyan Artırma modelleri ile karşılaştırılmıştır. Önerilen derin öğrenme modelleri, %90 doğruluk oranıyla tehdit ve hakaret içeriklerini başarılı bir şekilde tespit ederek makine öğrenmesi modellerine kıyasla daha üstün performans sergilemiştir.
 
This study aims to detect threats and insults in Turkish social media posts. Models have been developed using Natural Language Processing techniques and deep learning algorithms, and the proposed models have been compared with machine learning algorithms. The dataset, collected from Turkish social media posts, has been labelled and used for crime detection in social media using Long Short-Term Memory and BERT deep learning models. The deep learning models have been compared with machine learning models such as Support Vector Machines, Random Forest, and Gradient Boosting. The proposed deep learning models have outperformed the machine learning models, successfully detecting threatening content with an accuracy of 90%.
 

Source

Nigde Omer Halisdemir University Journal of Engineering Sciences

Volume

14

Issue

1

URI

https://dergipark.org.tr/en/pub/ngumuh/issue/90009/1551734
https://hdl.handle.net/11352/5706

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • TR-Dizin İndeksli Yayınlar / TR-Dizin Indexed Publications [672]
  • Yapay Zeka ve Veri Mühendisliği Bölümü [13]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.