• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Program-Output Estimator for Software Testing Using Program Analysis and Deep Learning Algorithms

Thumbnail

View/Open

Ana Makale (2.895Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Arasteh, Bahman
Sefati, Seyed Salar
Güneş, Peri
Hosseinzadeh, Vahid
Kiani, Farzad

Metadata

Show full item record

Citation

ARASTEH, Bahman, Seyed Salar SEFATI, Peri GÜNEŞ, Vahid HOSSEINZADEH & Farzad KIANI. "A Program-Output Estimator for Software Testing Using Program Analysis and Deep Learning Algorithms". Journal of Electronic Testing, (2025): 1-17.

Abstract

Software testing is increasingly used as a software quality control method. During testing, the program under test’s output is compared with the expected correct output using test data. Estimating the program’s correct output from test inputs is a research problem in software testing. A test predictor (oracle) is a mechanism for determining the correctness of software outputs during testing. Many statistical and data mining techniques have been utilized to design a software test oracle. This study uses a Deep Learning (DL) technique to design a software test oracle. The proposed approach uses Convolutional Neural Networks (CNNs) to build the model for predicting results. Creating a training dataset derived from the behavior of real-world programs is another contribution of this study. Converting the created dataset to image files and normalizing them is the other stage of this study. The experimental results for programs with numeric and classification outputs indicate that the introduced test oracle achieves approximately 98% accuracy and 97% sensitivity. Moreover, the proposed method demonstrates higher accuracy, precision, and sensitivity than previous methods.

Source

Journal of Electronic Testing

URI

https://hdl.handle.net/11352/5741

Collections

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.