• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Memory-Assisted Dynamic Multi-Objective Evolutionary Algorithm for Feature Drift Problem

Thumbnail

View/Open

Konferans Öğesi (1.062Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2020

Author

Sahmoud, Shaaban
Topçuoğlu, Haluk Rahmi

Metadata

Show full item record

Citation

SAHMOUD, Shaaban & Haluk Rahmi TOPÇUOĞLU. "Memory-Assisted Dynamic Multi-Objective Evolutionary Algorithm for Feature Drift Problem". IEEE Congress on Evolutionary Computation (CEC), 2020.

Abstract

In this paper, we propose an enhanced feature selection algorithm able to cope with feature drift problem that may occur in data streams, where the set of relevant features change over time. We utilize a dynamic multi-objective evolutionary algorithm to continuously search for the updated set of relevant features after the occurrence of every change in the environment. An artificial neural network is employed to classify the new instances based on the up-to-date obtained set of relevant features efficiently. Our algorithm exploits a detection mechanism for the severity of changes to estimate the severity level of occurred changes and adaptively replies to these changes by introducing diversity to algorithm solutions. Furthermore, a fixed-size memory is used to store the good solutions and reuse them after each change to accelerate the convergence and searching process of the algorithm. The experimental results using three datasets and different environmental parameters show that the combination of our improved feature selection algorithm with the artificial neural network outperforms related work.

Source

IEEE Congress on Evolutionary Computation (CEC)

URI

https://hdl.handle.net/11352/3545

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.