• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of Covid-19 X-ray Images Using Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR)

Thumbnail

View/Open

Konferans Öğesi (305.7Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2021

Author

Eren, Furkan
Gündoğar,Zeynep

Metadata

Show full item record

Citation

EREN, Furkan & Zeynep GÜNDOĞAR. "Classification of Covid-19 X-ray Images Using Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR)".6th International Conference on Computer Science and Engineering, UBMK 2021, (2021): 221-226.

Abstract

Medical images are crucial data sources for diseases that can not be diagnosed easily. X-rays, one of the medical images, have high resolution. Processing high-resolution images leads to a few problems such as difficulties in data storage, computational load, and the time required to process highdimensional data. It is vital to be able to diagnose diseases fast and accurately. In this study, a data set consisting of lung Xrays of patients with and without COVID-19 symptoms was taken into consideration. Disease diagnosis from these images can be summarized in two steps as preprocessing and classification. The preprocessing step covers the feature extraction process and for this the recently developed decomposition-based method, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR), is proposed as a feature extraction method. The classification of images is the second step where the methods of Random Forests and Support Vector Machines are applied. Also, the X-ray images have been reduced by 99,9% with TMEMPR and with several state-of-the-art feature extraction methods such as Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT). The results are examined with regard to different feature extraction methods and it is observed that a higher accuracy rate is achieved when the TMEMPR method is used.

Source

6th International Conference on Computer Science and Engineering, UBMK 2021

URI

https://hdl.handle.net/11352/4074

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.