• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methylprednisolone 100 mg Tablet Formulation With Pea Protein: Experimental Approaches Over Intestinal Permeability and Cytotoxicity

Thumbnail

View/Open

Ana makale (2.423Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2023

Author

Koç, Erhan
Çiftçi, Fatih
Çalık, Hilal
Korkmaz, Seval
Koç, Rabia Çakır

Metadata

Show full item record

Citation

KOÇ, Erhan, Fatih ÇİFTÇİ, Hilal ÇALIK, Seval KORKMAZ & Rabia ÇAKIR KOÇ." Methylprednisolone 100 mg Tablet Formulation With Pea Protein: Experimental Approaches Over Intestinal Permeability and Cytotoxicity." Drug Development and Industrial Pharmacy, 49.7 (2023):467-478.

Abstract

Objective: This study was carried out to transform the hydrolyzed pea protein into a pharmaceutical tablet form by masking methylprednisolone. Significance: This study provides some crucial contributions in showing how functional excipients such as pea protein, which are generally used in food industries, can be used in pharmaceutical product formulations and their effects. Methods: Methylprednisolone was formulated using spray drying technology. Design Expert Software (Version 13) was used for the statistical analysis. The in vitro cytotoxic effects for NIH/3T3 mouse fibroblast cells were investigated by XTT cell viability assay. HPLC was used to analyze the Caco-2 permeability studies and dissolution tests. Results: The optimum formulation was evaluated against the reference product by performing cytotoxicity and cell permeability studies. According to our test results, Papp (apparent permeability) values of Methylprednisolone were measured around 3 10-6 cm/s and Fa (fraction absorbed) values around 30%. These data indicate that Methylprednisolone HCl has ‘moderate permeability’ and our study confirmed that it could have belonged to BCS Class II-IV since both low solubility and moderate permeability. Conclusion: The findings offer valuable information to guide and inform the use of pea protein in pharmaceutical formulations. Significant effects on methylprednisolone tablet formulation designed with the philosophy of quality by design (QbD) of pea protein have been demonstrated by both in vitro and cell studies.

Source

Drug Development and Industrial Pharmacy

Volume

49

Issue

7

URI

https://hdl.handle.net/11352/4625

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.