• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lavandula Stoechas Extract Incorporated Polylactic Acid Nanofibrous Mats as an Antibacterial and Cytocompatible Wound Dressing

Thumbnail

View/Open

Ana Makale (2.445Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2023

Author

Mutlu, Betül
Çiftçi, Fatih
Üstündağ, Cem Bülent
Koç, Rabia Çakır

Metadata

Show full item record

Citation

MUTLU, Betül, Fatih ÇİFTÇİ, Cem Bülent ÜSTÜNDAĞ & Rabia ÇAKIR-KOÇ."Lavandula Stoechas Extract Incorporated Polylactic Acid Nanofibrous Mats as an Antibacterial and Cytocompatible Wound Dressing". International Journal of Biological Macromolecules, 253:3 (2023): 126932.

Abstract

In recent years, great efforts have been devoted to the design and production of bioactive wound dressings that promote skin regeneration and prevent infection. Many plant extracts and essential oils have been widely accepted in traditional medicine for a wide variety of medicinal purposes, especially wound healing. Over the past decade, many studies have focused on manufacturing and designing wound dressings containing plant compounds and extracts. In this study, Lavandula stoechas extract (LSE) (0.25 %, 0.5 %, and 1%wt) incorporatedpolylactic acid (PLA) nanofibrous mats were successfully produced and characterized. Microstructural analysis by SEM revealed that the fiber diameter changed with the increase in the amount of LSE. Also, the nanofibrous mats were evaluated for their in vitro antibacterial, cytotoxicity, and wound healing properties for their use as a wound dressing material. According to the results of the disc diffusion test, PLA nanofibrous mats containing LSE %1 showed 9.65 ± 0.46 and 7.37 ± 0.03 inhibition zone (mm) against E. coli and S. aureus, respectively. According to the results of the in vitro wound healing assay, mats containing 0.5 % LSE showed better-wound closure activity compared to the control. Our results show that LSE-incorporated nanofibrous dressings can be an effective alternative with good antimicrobial activity.

Source

International Journal of Biological Macromolecules

Volume

253

Issue

3

URI

https://hdl.handle.net/11352/4651

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.