• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of the Effect of Process Parameters and Geometry-Related Variations on Residual Stress for Aluminum 7050 Alloy Produced via Laser Powder Bed Fusion

Thumbnail

View/Open

Ana Makale (1.191Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2024

Author

Coşkun, Mert
Sağbaş, Binnur
Akyıldız, Yağız
Odabaş, Ömür Can

Metadata

Show full item record

Citation

COŞKUN, Mert, Binnur SAĞBAŞ, Yağız AKYILDIZ & Ömür Can ODABAŞ. "Investigation of the Effect of Process Parameters and Geometry-Related Variations on Residual Stress for Aluminum 7050 Alloy Produced via Laser Powder Bed Fusion". Journal of Materials Engineering and Performance, (2024): 1-9.

Abstract

Laser powder bed fusion (L-PBF), one of the additive manufacturing methods, has gained an important place in several fields like aviation, space biomedical, etc., due to its advantages, such as producing complex shaped parts with high quality in shorter times. On the contrary, disadvantages such as high surface roughness, low dimensional accuracy, problems in reproducibility, and residual stress may induce difficulties during the production of the part or usage of the final product. To reduce the residual stress on the parts manufactured by the L-PBF technique, methods such as optimizing geometry-related variations and printing process parameters or applying post-processes can be implemented. This study applied different process parameters and geometry-related variations to investigate the residual stress for aluminum 7050- RAM2 (2% ceramic added) alloy prepared by L-PBF. Laser power, scanning speed, re-melting (double scan) as the process parameters and dimensional variations of the sample (surface area), and different print orientations (0°, 45°) as the geometry-related variations were examined. Minor differences in the process parameters and geometry-related variations affected the residual stress significantly. Especially up-skin scan parameters, build orientation, and size of the top surface area may entirely change the residual stress characteristics.

Source

Journal of Materials Engineering and Performance

URI

https://hdl.handle.net/11352/4886

Collections

  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM) [131]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.