• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical Strength Investigation of Gyroid Design Parameters in Titanium Fixed Partial Denture Frameworks Manufactured by Additive Manufacturing

Thumbnail

View/Open

Ana Makale (7.817Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2024

Author

Çalışkan, Cemal İrfan
Khan, Hamaid Mahmood
Koca, Aliihsan
Şahin, Meryem
Tarakçı, Gürkan
Sivri, Burak

Metadata

Show full item record

Citation

ÇALIŞKAN, Cemal İrfan, Hamaid Mahmood KHAN, Aliihsan KOCA, Meryem ŞAHİN, Gürkan TARAKÇI & Burak SİVRİ. "Mechanical Strength Investigation of Gyroid Design Parameters in Titanium Fixed Partial Denture Frameworks Manufactured by Additive Manufacturing." International Journal of Advanced Manufacturing Technology (2024): 1-15.

Abstract

Additive manufacturing (AM) has emerged as a highly effective method within the biomedical field, particularly in prosthetic applications, where it offers numerous advantages such as reduced weight and improved user comfort. This study investigates how modifications to gyroid design parameters influence the mechanical strength of denture frameworks produced via additive manufacturing. Employing a multidisciplinary approach, the research encompasses several key stages: redesigning data from tomography scans, fabricating samples with titanium using additive manufacturing, conducting compression tests, and analyzing the samples through scanning electron microscopy (SEM) in a metallography laboratory. The investigation also includes fracture analysis and finite element analysis (FEA) to assess performance. By adopting gyroid geometry in framework designs, this study presents a novel method that enhances mechanical strength while significantly decreasing weight. Findings indicate that the integration of gyroid structures can maintain equivalent mechanical strength compared to traditional designs while achieving material savings of up to 40%.

Source

International Journal of Advanced Manufacturing Technology

URI

https://hdl.handle.net/11352/5156

Collections

  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM) [126]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [669]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [609]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.