• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning-Assisted Classification of Hip Conditions in Pediatric Cerebral Palsy Patients Using Migration Percentage Measurements

Thumbnail

View/Open

Ana Makale (4.824Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Birsel, Sema Ertan
Demirci, Ekrem
Şeker, Ali
Ayanoğlu, Kadriye Yasemin Usta
Öncü, Emir
Çiftçi, Fatih

Metadata

Show full item record

Citation

BİRSEL, Sema Ertan, Ekrem DEMİRCİ, Ali ŞEKER, Kadriye Yasemin Usta AYANOĞLU, Emir ÖNCÜ & Fatih ÇİFTÇİ. "Machine Learning-Assisted Classification of Hip Conditions in Pediatric Cerebral Palsy Patients Using Migration Percentage Measurements". Bone Reports, 25 (2025): 1-10.

Abstract

Hip displacement is a significant concern in children with cerebral palsy (CP), necessitating accurate and timely assessment to prevent long-term complications. This study developed a support vector machine (SVM) model to classify hip conditions using migration percentage (MP) measurements obtained from 176 hips across 88 anteroposterior pelvic radiographs. MP values were categorized into three groups: normal (MP ≤ 30 %), risky (30 % < MP ≤ 60 %), and dislocated (MP > 60 %). The SVM model was evaluated using stratified k-fold crossvalidation, with accuracy, precision, recall, and F1-scores as key metrics. Its classifications were compared to manual evaluations performed by an orthopedic resident and a pediatric orthopedic surgeon. The model achieved an overall accuracy of 92.898 %, surpassing the consistency and reliability of manual assessments, particularly in identifying dislocated hips. Statistical analysis showed no significant differences between the model's MP measurements and those of the clinicians, validating its effectiveness. This study highlights the potential of SVM models to enhance diagnostic accuracy, reduce variability in evaluations, and support clinical decision-making. Future research should expand the dataset and incorporate advanced machine learning models to further improve diagnostic precision.

Source

Bone Reports

Volume

25

URI

https://hdl.handle.net/11352/5312

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Teknoloji Transfer Ofisi (TTO) [20]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.