• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-teacher Based Knowledge Distillation for Retinal Vessel Segmentation

Thumbnail

View/Open

Ana Makale (2.971Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Eid, Abdullah
Aydin, Musa
Kuş, Zeki

Metadata

Show full item record

Citation

EID, Abdullah, Musa AYDIN & Zeki KUŞ. " Multi-teacher Based Knowledge Distillation for Retinal Vessel Segmentation". Health Information Science and Systems, 13.39 (2025): 1-18.

Abstract

Accurate segmentation of retinal vessels is crucial for the early diagnosis and management of various ocular diseases. Existing methods often struggle to segment thin vessels, leading to missed diagnoses and inaccurate treatment plans. This study proposes a novel Multi-Teacher Based Knowledge Distillation (MTKD) method for Retinal Vessel Segmenta tion (RVS) to address this challenge. Our approach utilizes the expertise of multiple teacher networks, each specialized in learning different vessel characteristics. Specifically, we train three distinct teacher networks: one on the original ground truth, one on a modified ground truth highlighting thin vessels, and another on a modified ground truth emphasizing thick vessels. The student network is then trained to minimize the knowledge discrepancy between its predictions and the soft predictions of all three teachers. By incorporating knowledge from these specialized teachers, the student network effectively learns to segment both thin and thick vessels with improved accuracy. We evaluate our method on two retinal fundus image datasets and two angiography datasets, demonstrating highly competitive performance compared to state-of-the-art methods. The proposed method improves the baseline U-Net model by up to 8.44 points in F1 and 10.42 points in IOU. Additionally, we introduce a penalization technique to the student model’s loss function, further enhancing segmentation performance. Comprehensive ablation studies validate the effectiveness of the multi-teacher approach, the choice of loss functions, and the impact of model complexity. Our f indings suggest that MTKD offers a promising approach for enhancing the robustness and accuracy of RVS. All source code, datasets, and results are made publicly available to support reproducibility and further research.

Source

Health Information Science and Systems

Volume

13

Issue

39

URI

https://link.springer.com/article/10.1007/s13755-025-00356-4
https://hdl.handle.net/11352/5340

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.