• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multi-Objective Deep Reinforcement Learning Algorithm for Spatio-temporal Latency Optimization in Mobile LoT-enabled Edge Computing Networks

Thumbnail

View/Open

Ana Makale (4.617Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Khoshvaght, Parisa
Haider, Amir
Rahmani, Amir Masoud
Gharehchopogh, Farhad Soleimanian
Anka, Ferzat
Lansky, Jan
Hosseinzadeh, Mehdi

Metadata

Show full item record

Citation

KHOSHVAGHT, Parisa, Amir HAIDER, Amir Masoud RAHMANI, Farhad Soleimanian GHAREHCHOPOG, Ferzat ANKA, Jan LANSKY, Mehdi HOSSEINZADEH. "A Multi-Objective Deep Reinforcement Learning Algorithm for Spatio-temporal Latency Optimization in Mobile LoT-enabled Edge Computing Networks". Simulation Modelling Practice and Theory, 143 (2025): 1-26.

Abstract

The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (MEC) systems. Spatio-temporal dynamics, which include the position of edge servers and the timing of task schedules, pose a complex optimization problem. These challenges are further exacerbated by the heterogeneity of IoT workloads and the constraints imposed by device mobility. The balance between computational overhead and communication challenges is also a problem. To solve these issues, advanced methods are needed for resource management and dynamic task scheduling in mobile IoT and edge computing environments. In this paper, we propose a Deep Reinforcement Learning (DRL) multi-objective algorithm, called a Double Deep Q-Learning (DDQN) framework enhanced with Spatio-temporal mobility prediction, latency-aware task offloading, and energy-constrained IoT device trajectory optimization for federated edge computing networks. DDQN was chosen for its optimize stability and reduced overestimation in Q-values. The framework employs a reward-driven optimization model that dynamically prioritizes latency-sensitive tasks, minimizes task migration overhead, and balances energy efficiency across devices and edge servers. It integrates dynamic resource allocation algorithms to address random task arrival patterns and real-time computational demands. Simulations demonstrate up to a 35 % reduction in end-to-end latency, a 28 %

Source

Simulation Modelling Practice and Theory

Volume

143

URI

https://hdl.handle.net/11352/5344

Collections

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.