• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced Machine Learning Techniques for Predicting Wear Performance in Graphene Oxide Particulate Interpenetrating Polymer Network Composites

Thumbnail

View/Open

Makale (17.03Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Russel, Eastus
Madhu, S.
S., Judy
Varuvel, Edwin Geo
Santhi, G.B.
Suresh, G.
J.S, Femilda Josephin
Albeshr, Mohammed F.
Kiani, Farzad

Metadata

Show full item record

Citation

RUSSEL, Eastus, S. MADHU, Judy S., Edwin Geo VARUVEL, G.B. SANTHI, G. SURESH, Femilda Josephin J.S., Mohammed F. ALBESHR & Farzad KIANI. “Advanced Machine Learning Techniques for Predicting Wear Performance in Graphene Oxide Particulate İnterpenetrating Polymer Network Composites”. Engineering Applications of Artificial Intelligence, 161 (2025): 118.

Abstract

This research investigates the wear behavior of hybrid polymeric composites made from synthetic glass and natural cotton fibers, reinforced with varying proportions of Graphene Oxide (GO) (0 %, 1 %, 3 %, 5 %, 7 %, 9 %). The effect of fiber arrangement and Graphene Oxide (GO) incorporation on wear rate and Coefficient of Friction (CoF) was evaluated using the Pin-On-Disk method, with analysis based on Taguchi's L32 Orthogonal Array. The optimal parameters were found at 6 min, 5 % GO, 300 revolutions per minute (rpm) speed, 20 mm (mm) track diameter, and 10 N (N) load, achieving a minimum wear rate of 0.612 × 10−4 cubic millimeters per newton-meter (mm3/N-m) and a CoF of 0.151. Predictive modeling was performed to predict the wear rate and coefficient of friction using supervised machine learning algorithms, including Linear Regression, Decision Tree, and Random Forest, to forecast material behavior. Performance evaluation using Confusion Matrix, Distribution Analysis, and various metrics showed that the Decision Tree model excelled, achieving near-perfect predictive power with a Mean Squared Error (MSE) of 0 and an R-squared value of 0.9999. The model demonstrated 100 % accuracy, with precision, recall, and F1-scores all equal to 1. This research demonstrates the effectiveness of combining natural and synthetic fibers with GO, along with the predictive power of machine learning in optimizing material properties.

Source

Engineering Applications of Artificial Intelligence

Issue

161

URI

https://hdl.handle.net/11352/5667

Collections

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.