• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional Bioink and 3D Bioprinting Tissue Scaffold Applications for Spinal Cord Injury

Thumbnail

View/Open

Ana Makale (1.507Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Yücer, Şeydanur
Saraç, Begüm
Özarslan, Ali Can
Sakarya, Deniz
Özerol, Esma Ahlatçıoğlu
Çiftçi, Fatih

Metadata

Show full item record

Citation

YÜCER, Şeydanur, Begüm SARAÇ, Ali Can ÖZARSLAN, Deniz SAKARYA, Esma Ahlatçıoğlu, ÖZEROL & Fatih ÇİFTÇİ. "Functional Bioink and 3D Bioprinting Tissue Scaffold Applications for Spinal Cord Injury". Annals of Biomedical Engineering, (2025): 1-28.

Abstract

Spinal cord injury (SCI), commonly resulting from sudden trauma such as traffic or sports accidents, leads to severe disruption of axonal connections and loss of sensory and motor function below the injury site. Despite numerous therapeutic efforts, effective strategies for neural repair remain limited. Tissue engineering has emerged as a promising approach for axonal regeneration, particularly through the design of three-dimensional (3D) polymeric scaffolds that can restore the structural and functional integrity of the injured spinal cord. This review focuses on recent advances in biomaterials and scaffold designs developed for SCI repair, emphasizing the role of nanocomposite systems that combine graphene oxide (GO), synthetic polymers such as PLGA–PEG, and bioactive ceramics like hydroxyapatite (HA). These hybrid materials offer improved biocompatibility, mechanical matching with spinal tissue, and enhanced cellular adhesion and guidance cues for axonal growth. The synergistic integration of these components enables the fabrication of multifunctional scaffolds capable of supporting stem cell differentiation and neurotrophic factor delivery. By critically summarizing the key parameters influencing scaffold performance, such as microarchitecture, surface modification, and mechanical compliance, this work outlines a framework for developing next-generation 3D nanocomposite scaffolds for SCI regeneration. The proposed approach highlights how GO/PLGA–PEG/HA systems can bridge the gap between experimental tissue engineering and clinically translatable neuroregenerative therapies.

Source

Annals of Biomedical Engineering

URI

https://hdl.handle.net/11352/5744

Collections

  • Biyomedikal Elektronik Tasarım Uygulama ve Araştırma Merkezi (BETAM) [11]
  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.