• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tree-Based Ensemble Regression Models for Emission Prediction of a Winter Green Oil-Hydrogen Dual-Fuel Engine with Zeolite After-Treatment

Thumbnail

View/Open

Ana Makale (4.554Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Js, Femilda Josephin
Subramanian, Balaji
Renjit, E. Jeslin
S, Naveen Venkatesh
Sugumaran, V
Subramanian, Thiyagarajan
Kiani, Farzad
Varuvel, Edwin Geo
Matijosius, Jonas
Kilikevicius, Arturas

Metadata

Show full item record

Citation

JS, Femilda Josephin, Balaji SUBRAMANIAN, E. Jeslin RENJIT, Naveen Venkatesh S, V. SUGUMARAN, Thiyagarajan SUBRAMANIAN, Farzad KIANI, Edwin Geo VARUVEL, Jonas MATIJOSIUS & Arturas KILIKEVICIUS. "Tree-Based Ensemble Regression Models for Emission Prediction of a Winter Green Oil-Hydrogen Dual-Fuel Engine with Zeolite After-Treatment". Renewable Energy, (2025): 1-10.

Abstract

This study presents an emission prediction framework for a dual-fuel compression-ignition engine operated on a 20 % winter green oil–diesel blend enriched with hydrogen and equipped with a zeolite-based after-treatment system. Extra Trees, Random Forest, Gradient Boosting, Extreme Gradient Boosting (XGBoost), and AdaBoost are the tree-based ensemble regression models used to predict the emission parameters under limited data conditions. The performance of the models was assessed through 5-fold cross-validation and a 20 % hold-out test method using R-Squared (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as the evaluation metrics. Among the five tree-based regression models Extra Trees Regressor performed better with highest R2 values in the range of 0.99966–0.99974 and the lowest error metrics for all the emission parameters and demonstrates the outstanding robustness and generalization ability of the model. The stronger consistency of extra trees across different test samples was demonstrated by absolute error heatmaps, while the model’s accuracy was further validated by comparing actual and predicted values. The study’s overall findings demonstrate the potential of tree-based ensemble learning, and extra trees in particular, as a lightweight, accurate and reliable tool for real-time emission prediction in low-carbon dual-fuel systems.

Source

Renewable Energy

URI

https://hdl.handle.net/11352/5747

Collections

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.