Show simple item record

dc.contributor.authorAgayev, Nazım
dc.contributor.authorHarmancı, Abdullah
dc.contributor.authorHalıcıoğlu, Sait
dc.contributor.authorGüngöroğlu, Gonca
dc.date.accessioned2014-07-14T12:51:07Z
dc.date.available2014-07-14T12:51:07Z
dc.date.issued2009
dc.identifier.citationAGAYEV, Nazım, Gonca GÜNGÖROĞLU, & Abdullah HARMANCI, & Sait HALICIOĞLU. "Abelian Modules." Acta Mathematica Universitatis Comenianae, 2 (2009): 235-244.en_US
dc.identifier.urihttp://www.emis.de/journals/AMUC/_vol-78/_no_2/_halicioglu/halicioglu.pdf
dc.identifier.urihttps://hdl.handle.net/11352/1983
dc.description.abstractIn this note, we introduce abelian modules as a generalization of abelian rings. Let R be an arbitrary ring with identity. A module M is called abelian if, for any m 2 M and any a 2 R, any idempotent e 2 R, mae = mea. We prove that every reduced module, every symmetric module, every semicommutative module and every Armendariz module is abelian. For an abelian ring R, we show that the module MR is abelian iff M[x]R[x] is abelian. We produce an example to show that M[x, ] need not be abelian for an abelian module M and an endomorphism of the ring R. We also prove that if the module M is abelian, then M is p.p.-module iff M[x] is p.p.-module, M is Baer module iff M[x] is Baer module, M is p.q.-Baer module iff M[x] is p.q.-Baer module.en_US
dc.language.isoengen_US
dc.publisherFaculty of Mathematics, Physics and Informatics Comenius Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleAbelian Modulesen_US
dc.typearticleen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategory[0-Belirlenecek]en_US
dc.contributor.institutionauthor[0-Belirlenecek]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record