dc.contributor.author | Agayev, Nazım | |
dc.contributor.author | Harmancı, Abdullah | |
dc.contributor.author | Halıcıoğlu, Sait | |
dc.date.accessioned | 2014-07-14T13:07:03Z | |
dc.date.available | 2014-07-14T13:07:03Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | AGAYEV, Nazım, Abdullah HARMANCI, & Sait HALICIOĞLU. "On Abelian Rings" Turkish Journals of Mathematics, 34 (2010): 465-474. | en_US |
dc.identifier.uri | http://journals.tubitak.gov.tr/math/issues/mat-10-34-4/mat-34-4-4-0711-1.pdf | |
dc.identifier.uri | https://hdl.handle.net/11352/1987 | |
dc.description.abstract | Let α be an endomorphism of an arbitrary ring R with identity. In this note, we introduce the notion
of α-abelian rings which generalizes abelian rings. We prove that α-reduced rings, α-symmetric rings,
α-semicommutative rings and α-Armendariz rings are α-abelian. For a right principally projective ring R,
we also prove that R is α-reduced if and only if R is α-symmetric if and only if R is α-semicommutative
if and only if R is α-Armendariz if and only if R is α-Armendariz of power series type if and only if R is
α-abelian. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | TÜBİTAK | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | α-reduced rings | en_US |
dc.subject | α-symmetric rings | en_US |
dc.subject | α-semicommutative rings | en_US |
dc.subject | α-Armendariz ring | en_US |
dc.subject | α-abelian rings | en_US |
dc.title | On Abelian Rings | en_US |
dc.type | article | en_US |
dc.contributor.department | FSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.relation.publicationcategory | [0-Belirlenecek] | en_US |
dc.contributor.institutionauthor | [0-Belirlenecek] | |