• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Dimension Reduction Techniques on High Dimensional Datasets

Thumbnail

View/Open

Ana Makale (480.2Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2018

Author

Çamurcu, Yılmaz
Yıldız, Kazım
Doğan, Buket

Metadata

Show full item record

Citation

ÇAMURCU, Yılmaz, Kazım YILDIZ & Buket DOĞAN. "Comparison of Dimension Reduction Techniques on High Dimensional Datasets". The International Arab Journal of Information Technology, 15.2 (2018): 257-261.

Abstract

High dimensional data becomes very common with the rapid growth of data that has been stored in databases or other information areas. Thus clustering process became an urgent problem. The well-known clustering algorithms are not adequate for the high dimensional space because of the problem that is called curse of dimensionality. So dimensionality reduction techniques have been used for accurate clustering results and improve the clustering time in high dimensional space. In this work different dimensionality reduction techniques were combined with Fuzzy C-Means clustering algorithm. It is aimed to reduce the complexity of high dimensional datasets and to generate more accurate clustering results. The results were compared in terms of cluster purity, cluster entropy and mutual info. Dimension reduction techniques are compared with current Central Processing Unit (CPU), current memory and elapsed CPU time. The experiments showed that the proposed work produces promising results on high dimensional space.

Source

The International Arab Journal of Information Technology

Volume

15

Issue

2

URI

https://hdl.handle.net/11352/3386

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.