dc.contributor.author | Aghayev, Nazım | |
dc.contributor.author | Halıcıoğlu, Sait | |
dc.contributor.author | Harmancı, Abdullah | |
dc.contributor.author | Üngör, Burcu | |
dc.date.accessioned | 2021-05-03T09:02:46Z | |
dc.date.available | 2021-05-03T09:02:46Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.citation | AGHAYEV, Nazım, Sait HALICIOĞLU, Abdullah HARMANCI & Burcu ÜNGÖR. "Modules Which are Reduced Over Their Endomorphism Rings". Thai Journal of Mathematics, 13.1 (2015): 177-188. | en_US |
dc.identifier.uri | https://hdl.handle.net/11352/3407 | |
dc.description.abstract | Let R be an arbitrary ring with identity and M a right R-module
with S = EndR(M). The module M is called reduced if for any m ∈ M and f ∈ S,
fm = 0 implies fM ∩ Sm = 0. In this paper, we investigate properties of reduced
modules and rigid modules. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | The Mathematical Association of Thailand | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Reduced Modules | en_US |
dc.subject | Rigid Modules | en_US |
dc.subject | Semicommutative Modules | en_US |
dc.subject | Abelian Modules | en_US |
dc.subject | Baer Modules | en_US |
dc.subject | Quasi-Baermodules | en_US |
dc.subject | Principally Quasi-Baermodules | en_US |
dc.subject | Rickart Modules | en_US |
dc.subject | Principally Projective Modules | en_US |
dc.title | Modules Which are Reduced Over Their Endomorphism Rings | en_US |
dc.type | article | en_US |
dc.relation.journal | Thai Journal of Mathematics | en_US |
dc.contributor.department | FSM Vakıf Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.identifier.volume | 13 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 177 | en_US |
dc.identifier.endpage | 188 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Aghayev, Nazım | |