• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Malware Detection in Android Systems with Traditional Machine Learning Models: A Survey

Thumbnail

View/Open

Konferans Öğesi (338.4Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2020

Author

Bayazıt, Esra Çalık
Şahingöz, Özgür Koray
Doğan, Buket

Metadata

Show full item record

Citation

BAYAZIT, Esra Çalık, Özgür Koray ŞAHİNGÖZ & Buket DOĞAN. "Malware Detection in Android Systems with Traditional Machine Learning Models: A Survey". International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020.

Abstract

Due to the increased number of mobile devices, they are integrated in every dimension of our daily life. To execute some sophisticated programs, a capable operating must be set up on them. Undoubtedly, Android is the most popular mobile operating system in the world. IT is extensively used both in smartphones and tablets with an open source manner which is distributed with Apache License. Therefore, many mobile application developers focused on these devices and implement their products. In recent years, the popularity of Android devices makes it a desirable target for malicious attackers. Especially sophisticated attackers focused on the implementation of Android malware which can acquire and/or utilize some personal and sensitive data without user consent. It is therefore essential to devise effective techniques to analyze and detect these threats. In this work, we aimed to analyze the algorithms which are used in malware detection and making a comparative analysis of the literature. With this study, it is intended to produce a comprehensive survey resource for the researchers, which aim to work on malware detection.

Source

International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)

URI

https://hdl.handle.net/11352/3544

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.