Basit öğe kaydını göster

dc.contributor.authorSahmoud, Shaaban
dc.contributor.authorTopçuoğlu, Haluk Rahmi
dc.date.accessioned2021-05-18T12:16:15Z
dc.date.available2021-05-18T12:16:15Z
dc.date.issued2020en_US
dc.identifier.citationSAHMOUD, Shaaban & Haluk Rahmi TOPÇUOĞLU. "Memory-Assisted Dynamic Multi-Objective Evolutionary Algorithm for Feature Drift Problem". IEEE Congress on Evolutionary Computation (CEC), 2020.en_US
dc.identifier.urihttps://hdl.handle.net/11352/3545
dc.description.abstractIn this paper, we propose an enhanced feature selection algorithm able to cope with feature drift problem that may occur in data streams, where the set of relevant features change over time. We utilize a dynamic multi-objective evolutionary algorithm to continuously search for the updated set of relevant features after the occurrence of every change in the environment. An artificial neural network is employed to classify the new instances based on the up-to-date obtained set of relevant features efficiently. Our algorithm exploits a detection mechanism for the severity of changes to estimate the severity level of occurred changes and adaptively replies to these changes by introducing diversity to algorithm solutions. Furthermore, a fixed-size memory is used to store the good solutions and reuse them after each change to accelerate the convergence and searching process of the algorithm. The experimental results using three datasets and different environmental parameters show that the combination of our improved feature selection algorithm with the artificial neural network outperforms related work.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/CEC48606.2020.9185730en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectDynamic Multi-Objective Evolutionary Algorithmsen_US
dc.subjectLearning in Non-Stationary Environmentsen_US
dc.subjectSeverity of Changesen_US
dc.subjectFeature Driften_US
dc.subjectMemory-Based Algorithmsen_US
dc.titleMemory-Assisted Dynamic Multi-Objective Evolutionary Algorithm for Feature Drift Problemen_US
dc.typeconferenceObjecten_US
dc.relation.journalIEEE Congress on Evolutionary Computation (CEC)en_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorSahmoud, Shaaban


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster