Basit öğe kaydını göster

dc.contributor.authorBayazıt, Esra Çalık
dc.contributor.authorŞahingöz, Özgür Koray
dc.contributor.authorDoğan, Buket
dc.date.accessioned2021-09-20T11:23:45Z
dc.date.available2021-09-20T11:23:45Z
dc.date.issued2021en_US
dc.identifier.citationBAYAZIT, Esra Çalık, Özgür Koray ŞAHİNGÖZ & Buket DOĞAN. "Neural Network Based Android Malware Detection with Different IP Coding Methods". 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), (2021).en_US
dc.identifier.urihttps://hdl.handle.net/11352/3936
dc.description.abstractDue to the COVID-19 epidemic that has affected the whole world, internet use has increased more than in previous years. Almost all operations and transactions are done over the internet, especially with the use of cellular phones and tablet PCs. This growth results in many security deficits that need to be solved by security admins and end users. Malicious software (malware) is generally preferred for attacking the computer systems and recently for cellular phones. As a mobile operating system, Android is the main player of this sector with about 72% market share worldwide. Therefore, malware attacks especially target these devices, for reaching the maximum number of victims. The situation is getting more and more devastating with around 12,000 new Android malware attacks every day. This is one critical problem that needed to be solved by setting up an android malware detection system. Machine learning algorithms are frequently preferred in data mining-based security applications which contain lots of features in datasets. Artificial Neural networks are one of the mostly preferred learning models for training the system. Therefore, in this paper, it is aimed to implement a neural network based android malware detection system by using an up-to-date dataset presented by the Cyber Security Institute of Canada as CICMalDroid2017. Ip Addresses are one of the features in this dataset, and we focus on two different IP coding methods, as IP Splitting to Four Numbers, IP Transform to integer number, and no IP Address. In experimental study we reached a good level of accuracy rate as 98.4% by splitting an IP address to four numbers.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/HORA52670.2021.9461302en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectMachine Learningen_US
dc.subjectANNen_US
dc.subjectAndroid Systemen_US
dc.subjectMalware Detectionen_US
dc.titleNeural Network Based Android Malware Detection with Different IP Coding Methodsen_US
dc.typeconferenceObjecten_US
dc.relation.journal2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)en_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBayazıt, Esra Çalık


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster