• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative Enhanced Multivariance Products Representation for Effective Compression of Hyperspectral Images

Thumbnail

Göster/Aç

Ana makale (3.443Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

November 2

Yazar

Tuna, Süha
Töreyin, Behçet Uğur
Demiralp, Metin
Ren, Jinchang
Zhao, Huimin
Marshall, Stephen

Üst veri

Tüm öğe kaydını göster

Künye

TUNA, Süha, Behçet Uğur TÖREYİN, Metin DEMİRALP, Jinchang REN, Huimin ZHAO & Stephen MARSHALL. "Iterative Enhanced Multivariance Products Representation for Effective Compression of Hyperspectral Images". IEEE Transactions on Geoscience and Remote Sensing, 59.11 November (2021): 9569-9584.

Özet

Effective compression of hyperspectral (HS) images is essential due to their large data volume. Since these images are high dimensional, processing them is also another challenging issue. In this work, an efficient lossy HS image compression method based on enhanced multivariance products representation (EMPR) is proposed. As an efficient data decomposition method, EMPR enables us to represent the given multidimensional data with lower-dimensional entities. EMPR, as a finite expansion with relevant approximations, can be acquired by truncating this expansion at certain levels. Thus, EMPR can be utilized as a highly effective lossy compression algorithm for hyper spectral images. In addition to these, an efficient variety of EMPR is also introduced in this article, in order to increase the compression efficiency. The results are benchmarked with several state-of-the-art lossy compression methods. It is observed that both higher peak signal-to-noise ratio values and improved classification accuracy are achieved from EMPR-based methods.

Kaynak

IEEE Transactions on Geoscience and Remote Sensing

Cilt

59

Sayı

11

Bağlantı

https://ieeexplore.ieee.org/document/9258418
https://hdl.handle.net/11352/3984

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.