• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Adaptive Feature Extraction Method for Classification of Covid-19 X-Ray Images

Thumbnail

View/Open

Ana Makale (687.7Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2022

Author

Gündoğar, Zeynep
Eren, Furkan

Metadata

Show full item record

Citation

GÜNDOĞAR, Zeynep & Furkan EREN. "An Adaptive Feature Extraction Method for Classification of Covid-19 X-Ray İmages", Signal, Image and Video Processing, (2022).

Abstract

This study aims to detect Covid-19 disease in the fastest and most accurate way from X-ray images by developing a new feature extraction method and deep learning model . Partitioned Tridiagonal Enhanced Multivariance Products Representation (PTMEMPR) method is proposed as a new feature extraction method by using matrix partition in TMEMPR method which is known as matrix decomposition method in the literature. The proposed method which provides 99.9% data reduction is used as a preprocessing method in the scheme of the Covid-19 diagnosis. To evaluate the performance of the proposed method, it is compared with the state-of-the-art feature extraction methods which are Singular Value Decomposition(SVD), Discrete Wavelet Transform(DWT) and Discrete Cosine Transform(DCT). Also new deep learning models which are called FSMCov, FSMCov-N and FSMCov-L are developed in this study. The experimental results indicate that the combination of newly proposed feature extraction method and deep learning models yield an overall accuracy 99.8%.

Source

Signal, Image and Video Processing

URI

https://hdl.handle.net/11352/4078

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.