• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Islanding Detection in Microgrid Using Deep Learning Based on 1D CNN and CNN-LSTM Networks

Thumbnail

Göster/Aç

Ana Makale (1.804Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2022

Yazar

Ozcanli, Asiye Kaymaz
Baysal, Mustafa

Üst veri

Tüm öğe kaydını göster

Künye

OZCANLI, Asiye Kaymaz, & Mustafa BAYSAL. "Islanding Detection in Microgrid Using Deep Learning Based on 1D CNN and CNN-LSTM Networks". Sustainable Energy, Grids and Networks, 32 (2022): 100839.

Özet

Islanding detection is a critical task due to safety hazards and technical issues for the operation of microgrids. Deep learning (DL) has been applied for islanding detection and achieved good results due to the ability of automatic feature learning in recent years. Long short term memory (LSTM) and two dimensional (2D) convolutional neural networks (CNN) based DL techniques are implemented and demonstrated well performance on islanding detection. However, one dimensional (1D) CNN is more suitable for real-time implementations since it has relatively low complexity and cost-effective than 2D CNN. In this paper, for the first time, the 1D CNN and the combination of 1D CNN-LSTM are proposed for islanding detection to better exploit the global information of islanding data samples using the strengths of both networks. The proposed methods utilize only voltage and current harmonic measurements as input at the point of common coupling (PCC). About 4000 cases under the modified CERTS microgrid model are simulated to evaluate the performance of the proposed architectures. The simulation results and the presented analysis show that the proposed networks have achieved the maximum accuracy of 100% on the task of islanding detection; especially the proposed CNN-LSTM model outperforms the other approaches. Furthermore, the robustness of the proposed methods is demonstrated with unseen samples under low none detection zone and the expansion of microgrid topology.

Kaynak

Sustainable Energy, Grids and Networks

Cilt

32

Sayı

-

Bağlantı

https://hdl.handle.net/11352/4132

Koleksiyonlar

  • Elektrik-Elektronik Mühendisliği Bölümü [75]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.