• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Intelligent Traffic Recovery Model for Emergency Vehicles Based on Context-aware Reinforcement Learning

Thumbnail

Göster/Aç

Ana Makale (2.797Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2023

Yazar

Kiani, Farzad
Saraç, Ömer Faruk

Üst veri

Tüm öğe kaydını göster

Künye

KIANI, Farzad & Ömer Faruk SARAÇ. "A Novel Intelligent Traffic Recovery Model for Emergency Vehicles Based on Context-aware Reinforcement Learning".Information Sciences, 619 (2023): 288-309.

Özet

Management of traffic emergencies has become very popular in recent years. However, timely response to emergencies and recovering from an emergency is an important prob- lem in itself. The strategies in the current studies merely suggest that after an emergency vehicle passes, the state should iterate to the next phase. Therefore, this paper proposes a novel approach for recovering from an emergency situation at an intersection based on real scenarios. The proposed method is a combination of context-aware and Reinforcement Learning (RL) models that predicts better alternatives for different states rather than just iterating to the next phase. In this regard, a new algorithm, named Interrupt Algorithm, is proposed to predict proper actions for recovering the emergency situation. This algo- rithm uses a Q-learning-based model that learns from traffic context for an emergency sit- uation and chooses viable action from an action set. The recovery actions are categorized as max, min, and avg, respectively. Test results show that our proposed model outperforms traffic flow over than standard single choice recovering action-based approach by approx- imately 80%. Based on this, it may be more beneficial to choose different actions and there- fore, proposed algorithm with the help of RL presents a more dynamic emergency recovery model.

Kaynak

Information Sciences

Sayı

619

Bağlantı

https://hdl.handle.net/11352/4202

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.