• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PSCSO: Enhanced Sand Cat Swarm Optimization Inspired by the Political System to Solve Complex Problems

Thumbnail

View/Open

Ana makale (5.833Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2023

Author

Kiani, Farzad
Anka, Fateme Aysin
Erenel, Fahri

Metadata

Show full item record

Citation

KIANI, Farzad, Fateme Aysin ANKA & Fahri ERENEL. "PSCSO: Enhanced Sand Cat Swarm Optimization Inspired by the Political System to Solve Complex Problems". Advances in Engineering Software, 178 (2023): 103423.

Abstract

The Sand Cat Swarm Optimization (SCSO) algorithm is a recently introduced metaheuristic with balanced behavior in the exploration and exploitation phases. However, it is not fast in convergence and may not be successful in finding the global optima, especially for complex problems since it starts the exploitation phase late. Moreover, the performance of SCSO is also affected by incorrect position as it depends on the location of the global optimum. Therefore, this study proposes a new method for the SCSO algorithm with a multidisciplinary principle inspired by the Political (Parliamentary) system, which is named PSCSO. The suggested algorithm increases the chances of finding the global solution by randomly choosing positions between the position of the candidate’s best solution available so far and the current position during the exploitation phase. In this regard, a new coefficient is defined that affects the exploration and exploitation phases. In addition, a new mathematical model is introduced to use in the exploitation phase. The performance of the PSCSO algorithm is analyzed on a total of 41 benchmark functions from CEC2015, 2017, and 2019. In addition, its performance is evaluated in four classical engineering problems. The proposed algorithm is compared with the SCSO, Stochastic variation and Elite collaboration in SCSO (SE-SCSO), Hybrid SCSO (HSCSO), Parliamentary Optimization Algorithm (POA), and Arithmetic Optimization Algorithm (AOA) algorithms, which have been proposed in recent years. The obtained results depict that the PSCSO algorithm performs better or equivalently to the compared optimization algorithms.

Source

Advances in Engineering Software

Issue

178

URI

https://hdl.handle.net/11352/4258

Collections

  • Bilgisayar Mühendisliği Bölümü [156]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [432]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [405]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.