• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Protecting Android Devices from Malware Attacks: A State-of-the-Art Report of Concepts, Modern Learning Models and Challenges

Thumbnail

Göster/Aç

Ana Makale (1.395Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2023

Yazar

Bayazıt, Esra Çalık
Şahingöz, Özgür Koray
Doğan, Buket

Üst veri

Tüm öğe kaydını göster

Künye

BAYAZIT, Esra ÇALIK, Özgür Koray ŞAHİNGÖZ & Buket DOĞAN. "Protecting Android Devices from Malware Attacks: A State-of-the-Art Report of Concepts, Modern Learning Models and Challenges". IEEE Access, (2023): 1-8.

Özet

Advancements in microelectronics have increased the popularity of mobile devices like cellphones, tablets, e-readers, and PDAs. Android, with its open-source platform, broad device support, customizability, and integration with the Google ecosystem, has become the leading operating system for mobile devices. While Android's openness brings benefits, it has downsides like a lack of official support, fragmentation, complexity, and security risks if not maintained. Malware exploits these vulnerabilities for unauthorized actions and data theft. To enhance device security, static and dynamic analysis techniques can be employed. However, current attackers are becoming increasingly sophisticated, and they are employing packaging, code obfuscation, and encryption techniques to evade detection models. Researchers prefer flexible artificial intelligence methods, particularly deep learning models, for detecting and classifying malware on Android systems. In this survey study, a detailed literature review was conducted to investigate and analyze how deep learning approaches have been applied to malware detection on Android systems. The study also provides an overview of the Android architecture, datasets used for deep learning-based detection, and open issues that will be studied in the future.

Kaynak

IEEE Access

Bağlantı

https://ieeexplore.ieee.org/document/10274970
https://hdl.handle.net/11352/4668

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.