• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Triplet MAML for Few-shot Classification Problems

Thumbnail

Göster/Aç

Konferans Öğesi (3.474Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2023

Yazar

Gülcü, Ayla
Özkan, İsmail Taha Samed
Kuş, Zeki
Karakuş, Osman Furkan

Üst veri

Tüm öğe kaydını göster

Künye

GÜLCÜ, Ayla, İsmail Taha Samed ÖZKAN, Zeki KUŞ & Osman Furkan KARAKUŞ. "Triplet MAML for Few-shot Classification Problems". International Conference on Advanced Engineering, Technology and Applications, (2023): 437-449.

Özet

In this study, we propose a TripletMAML algorithm as an extension to Model-Agnostic Meta-Learning (MAML) which is the most widely-used optimization-based meta-learning algorithm. We approach MAML from a metric-learning perspective and train it using meta-learning tasks composed of triplets of images. The idea of meta-learning is preserved while generating the meta-learning tasks and training our novel meta-model. The experimental results obtained on four few-shot classification datasets show that TripletMAML that is trained using a combined loss yields in high quality results. We compared the performance of TripletMAML to several metric learning-based methods and a baseline method, in addition to MAML. For fair comparison, we used the reported results of those algorithms that were obtained using the same shallow backbone. The results show that TripletMAML improves MAML by a large margin, and yields better results than most of the compared algorithms in both 1-shot and 5-shot settings. Moreover, when we consider the classification performance of other meta-learning algorithms that use much deeper backbones, we conclude that TripletMAML is not only competitive in terms of the classification performance but also very efficient in terms of the complexity.

Kaynak

International Conference on Advanced Engineering, Technology and Applications

Bağlantı

https://hdl.handle.net/11352/4714

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.