• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • İnsan ve Toplum Bilimleri Fakültesi / Faculty of Humanities and Social Sciences
  • Psikoloji Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • İnsan ve Toplum Bilimleri Fakültesi / Faculty of Humanities and Social Sciences
  • Psikoloji Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional Neural Networks Stratify Parkinson’s Disease Patients Across the Spectrum of Cognitive Impairment

Thumbnail

Göster/Aç

Ana Makale (6.157Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2024

Yazar

Hajebrahimi, Farzin
Budak, Miray
Saricaoglu, Mevhibe
Temel, Zeynep
Demir, Tugce Kahraman
Hanoglu, Lutfu
Yildirim, Suleyman
Bayraktaroglu, Zubeyir

Üst veri

Tüm öğe kaydını göster

Künye

HAJEBRAHIMI, Farzin, Miray BUDAK, Mevhibe SARICAOĞLU, Zeynep TEMEL, Tuğce Kahraman DEMİR, Lütfü HANOĞLU, Suleyman YILDIRIM & Zübeyir BAYRAKTAROĞLU. "Functional Neural Networks Stratify Parkinson’s Disease Patients Across the Spectrum of Cognitive Impairment". Brain and Behavior, 14.1 (2023): 1-19.

Özet

Introduction: Cognitive impairment (CI) is a significant non-motor symptoms inParkinson’s disease (PD) that often precedes the emergence of motor symptoms by several years. Patients with PD hypothetically progress from stages without CI (PD-normal cognition [NC]) to stageswithMild CI (PD-MCI) and PDdementia (PDD). CI symptoms in PD are linked to different brain regions and neural pathways, in addition to being the result of dysfunctional subcortical regions. However, it is still unknown how functional dysregulation correlates to progression during the CI. Neuroimaging techniques hold promise in discriminating CI stages of PD and further contribute to the biomarker formation of CI in PD. In this study, we explore disparities in the clinical assessments and resting-state functional connectivity (FC) among three CI stages of PD. Methods: We enrolled 88 patients with PD and 26 healthy controls (HC) for a cross sectional clinical study and performed intra- and inter-network FC analysis in conjunction with comprehensive clinical cognitive assessment. Results: Our findings underscore the significance of several neural networks, namely, the default mode network (DMN), frontoparietal network (FPN), dorsal attention network, and visual network (VN) and their inter–intra-network FC in differentiating between PD-MCI and PDD. Additionally, our results showed the importance of sensory motor network, VN,DMN, and salience network (SN) in the discriminating PD-NC from PDD. Finally, in comparison to HC, we found DMN, FPN, VN, and SN as pivotal networks for further differential diagnosis of CI stages of PD. Conclusion:We propose that resting-state networks (RSN) can be a discriminating factor in distinguishing the CI stages of PD and progressing from PD-NC toMCI or PDD. The integration of clinical and neuroimaging data may enhance the early detection of PD in clinical settings and potentially prevent the disease from advancing to more severe stages.

Kaynak

Brain and Behavior

Cilt

14

Sayı

1

Bağlantı

https://onlinelibrary.wiley.com/doi/10.1002/brb3.3384
https://hdl.handle.net/11352/4717

Koleksiyonlar

  • Psikoloji Bölümü [77]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.